Some clean up

This commit is contained in:
Maximilian Grau 2021-11-02 01:16:45 +01:00
parent 9405b3d8b8
commit 4f58326d4c
4 changed files with 59 additions and 123 deletions

View file

@ -9,10 +9,7 @@
constexpr size_t OledWidth = 128;
constexpr size_t OledPages = 4;
namespace
{
constexpr auto DisplaySpiPeripherie = &hspi2;
} // namespace
constexpr auto UsedSpiPeripherie = &hspi2;
extern QueueHandle_t spiMutex;
extern void waitForSpiFinished();
@ -28,7 +25,7 @@ public:
setCommandPin();
setChipSelect(true);
HAL_SPI_Transmit_DMA(DisplaySpiPeripherie, &cmd, 1);
HAL_SPI_Transmit_DMA(UsedSpiPeripherie, &cmd, 1);
waitForSpiFinished();
setChipSelect(false);
@ -42,7 +39,7 @@ public:
setDataPin();
setChipSelect(true);
HAL_SPI_Transmit_DMA(DisplaySpiPeripherie, &data, 1);
HAL_SPI_Transmit_DMA(UsedSpiPeripherie, &data, 1);
waitForSpiFinished();
setChipSelect(false);
@ -59,7 +56,7 @@ public:
setDataPin();
setChipSelect(true);
HAL_SPI_Transmit_DMA(DisplaySpiPeripherie, const_cast<uint8_t *>(data), length);
HAL_SPI_Transmit_DMA(UsedSpiPeripherie, const_cast<uint8_t *>(data), length);
waitForSpiFinished();
setChipSelect(false);

View file

@ -16,63 +16,58 @@
extern QueueHandle_t spiMutex;
extern void waitForSpiFinished();
extern Renderer renderer;
extern void initDisplay();
constexpr auto MaximumChars = 22 * 4;
char buffer[MaximumChars];
constexpr auto SpiPeripherie = &hspi2;
namespace
{
uint8_t txBuffer[512 + 1];
constexpr auto temperatureOffset = 7.0f;
constexpr auto HeaterProfileLength = 1;
constexpr auto TemperatureOffset = 7.0f;
constexpr auto MaximumChars = 22 * 4;
char buffer[MaximumChars];
struct bme68x_dev bmeSensor;
struct bme68x_conf bmeConf;
struct bme68x_heatr_conf bmeHeaterConf;
struct bme68x_data bmeData[3];
uint32_t delayInUs;
uint8_t numberOfData;
constexpr auto ProfileLength = 1;
// Heater temperature in degree Celsius
uint16_t temperatureProfile[ProfileLength] = {320};
uint16_t temperatureProfile[HeaterProfileLength] = {320};
// Heating duration in milliseconds
uint16_t durationProfile[ProfileLength] = {150};
uint16_t durationProfile[HeaterProfileLength] = {150};
constexpr uint8_t numberRequestedVirtualSensors = 4;
bsec_sensor_configuration_t requestedVirtualSensors[numberRequestedVirtualSensors];
float iaq, rawTemperature, pressure, rawHumidity, gasResistance, stabStatus, runInStatus,
temperature, humidity, staticIaq, co2Equivalent, breathVocEquivalent, compGasValue,
gasPercentage;
uint8_t iaqAccuracy, staticIaqAccuracy, co2Accuracy, breathVocAccuracy, compGasAccuracy,
gasPercentageAcccuracy;
float iaq, temperature, humidity, co2Equivalent;
uint8_t iaqAccuracy, co2Accuracy;
uint8_t bsecState[BSEC_MAX_STATE_BLOB_SIZE];
uint8_t workBuffer[BSEC_MAX_WORKBUFFER_SIZE];
constexpr uintptr_t EepromAddress = FLASH_EEPROM_BASE;
//--------------------------------------------------------------------------------------------------
void setChipSelect(bool state)
{
HAL_GPIO_WritePin(VocSensorCS_GPIO_Port, VocSensorCS_Pin,
state ? GPIO_PIN_RESET : GPIO_PIN_SET);
}
//--------------------------------------------------------------------------------------------------
// SPI read function map
BME68X_INTF_RET_TYPE bme68x_spi_read(uint8_t reg_addr, uint8_t *reg_data, uint32_t len, void *)
{
xSemaphoreTake(spiMutex, portMAX_DELAY);
setChipSelect(true);
HAL_SPI_Transmit_DMA(SpiPeripherie, &reg_addr, 1);
HAL_SPI_Transmit_DMA(UsedSpiPeripherie, &reg_addr, 1);
waitForSpiFinished();
HAL_SPI_Receive_DMA(SpiPeripherie, reg_data, len);
HAL_SPI_Receive_DMA(UsedSpiPeripherie, reg_data, len);
waitForSpiFinished();
setChipSelect(false);
@ -81,6 +76,7 @@ BME68X_INTF_RET_TYPE bme68x_spi_read(uint8_t reg_addr, uint8_t *reg_data, uint32
return 0;
}
//--------------------------------------------------------------------------------------------------
// SPI write function map
BME68X_INTF_RET_TYPE bme68x_spi_write(uint8_t reg_addr, const uint8_t *reg_data, uint32_t len,
void *)
@ -94,7 +90,7 @@ BME68X_INTF_RET_TYPE bme68x_spi_write(uint8_t reg_addr, const uint8_t *reg_data,
xSemaphoreTake(spiMutex, portMAX_DELAY);
setChipSelect(true);
HAL_SPI_Transmit_DMA(SpiPeripherie, const_cast<uint8_t *>(txBuffer), len + 1);
HAL_SPI_Transmit_DMA(UsedSpiPeripherie, const_cast<uint8_t *>(txBuffer), len + 1);
waitForSpiFinished();
setChipSelect(false);
@ -103,34 +99,29 @@ BME68X_INTF_RET_TYPE bme68x_spi_write(uint8_t reg_addr, const uint8_t *reg_data,
return 0;
}
//--------------------------------------------------------------------------------------------------
// Delay function maps
void bme68x_delay_us(uint32_t period, void *)
{
vTaskDelay(period / 1000);
}
int8_t bme68x_spi_init(struct bme68x_dev *bme)
//--------------------------------------------------------------------------------------------------
void bme68x_spi_init(struct bme68x_dev *bme)
{
int8_t rslt = BME68X_OK;
if (bme == NULL)
return;
if (bme != NULL)
{
bme->read = bme68x_spi_read;
bme->write = bme68x_spi_write;
bme->intf = BME68X_SPI_INTF;
bme->delay_us = bme68x_delay_us;
bme->amb_temp =
25; /* The ambient temperature in deg C is used for defining the heater temperature */
}
else
{
rslt = BME68X_E_NULL_PTR;
}
return rslt;
bme->amb_temp = 25; /* The ambient temperature in deg C is used for defining the heater
temperature */
}
//--------------------------------------------------------------------------------------------------
void bmeSensorInit()
{
bme68x_spi_init(&bmeSensor);
@ -147,22 +138,22 @@ void bmeSensorInit()
bmeHeaterConf.enable = BME68X_ENABLE;
bmeHeaterConf.heatr_temp_prof = temperatureProfile;
bmeHeaterConf.heatr_dur_prof = durationProfile;
bmeHeaterConf.profile_len = ProfileLength;
bmeHeaterConf.profile_len = HeaterProfileLength;
bme68x_set_heatr_conf(BME68X_SEQUENTIAL_MODE, &bmeHeaterConf, &bmeSensor);
bme68x_set_op_mode(BME68X_SEQUENTIAL_MODE, &bmeSensor);
bsec_init();
// Change 3 virtual sensors (switch IAQ and raw temperature -> on / pressure -> off
// create 3 virtual sensor
requestedVirtualSensors[0].sensor_id = BSEC_OUTPUT_IAQ;
requestedVirtualSensors[0].sample_rate = BSEC_SAMPLE_RATE_CONTINUOUS;
requestedVirtualSensors[0].sample_rate = BSEC_SAMPLE_RATE_LP;
requestedVirtualSensors[1].sensor_id = BSEC_OUTPUT_CO2_EQUIVALENT;
requestedVirtualSensors[1].sample_rate = BSEC_SAMPLE_RATE_CONTINUOUS;
requestedVirtualSensors[1].sample_rate = BSEC_SAMPLE_RATE_LP;
requestedVirtualSensors[2].sensor_id = BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE;
requestedVirtualSensors[2].sample_rate = BSEC_SAMPLE_RATE_CONTINUOUS;
requestedVirtualSensors[2].sample_rate = BSEC_SAMPLE_RATE_LP;
requestedVirtualSensors[3].sensor_id = BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY;
requestedVirtualSensors[3].sample_rate = BSEC_SAMPLE_RATE_CONTINUOUS;
requestedVirtualSensors[3].sample_rate = BSEC_SAMPLE_RATE_LP;
// Allocate a struct for the returned physical sensor settings
bsec_sensor_configuration_t requiredSensorSettings[BSEC_MAX_PHYSICAL_SENSOR];
@ -173,43 +164,25 @@ void bmeSensorInit()
requiredSensorSettings, &numberRequiredSensorSettings);
}
//--------------------------------------------------------------------------------------------------
void bmeRun()
{
delayInUs = bme68x_get_meas_dur(BME68X_SEQUENTIAL_MODE, &bmeConf, &bmeSensor) +
uint32_t delayInUs = bme68x_get_meas_dur(BME68X_SEQUENTIAL_MODE, &bmeConf, &bmeSensor) +
(bmeHeaterConf.heatr_dur_prof[0] * 1000);
vTaskDelay(delayInUs / 1000);
auto status = bme68x_get_data(BME68X_SEQUENTIAL_MODE, bmeData, &numberOfData, &bmeSensor);
if (status != 0)
{
__asm("bkpt");
}
}
//--------------------------------------------------------------------------------------------------
void bsecRun()
{
/*
auto status = bsec_set_state(state, BSEC_MAX_STATE_BLOB_SIZE, workBuffer, sizeof(workBuffer));
if (status == BSEC_OK)
{
for (uint32_t i = 0; i < BSEC_MAX_STATE_BLOB_SIZE; i++)
{
bsecState[i] = state[i];
}
validBsecState = true;
}
*/
if (!(bmeData[numberOfData - 1].status & BME68X_NEW_DATA_MSK))
{
__asm("bkpt");
return;
}
bsec_input_t inputs[BSEC_MAX_PHYSICAL_SENSOR];
uint8_t nInputs = 0, nOutputs = 0;
int64_t currentTimeInNs = xTaskGetTickCount() * int64_t(1000) * int64_t(1000);
uint8_t nInputs = 0;
int64_t currentTimeInNs = xTaskGetTickCount() * int64_t(1'000'000);
inputs[nInputs].sensor_id = BSEC_INPUT_TEMPERATURE;
inputs[nInputs].signal = bmeData[numberOfData - 1].temperature / 100.0f;
@ -232,25 +205,19 @@ void bsecRun()
nInputs++;
inputs[nInputs].sensor_id = BSEC_INPUT_HEATSOURCE;
inputs[nInputs].signal = temperatureOffset;
inputs[nInputs].signal = TemperatureOffset;
inputs[nInputs].time_stamp = currentTimeInNs;
nInputs++;
uint8_t nOutputs = 0;
nOutputs = BSEC_NUMBER_OUTPUTS;
bsec_output_t outputs[BSEC_NUMBER_OUTPUTS];
auto status = bsec_do_steps(inputs, nInputs, outputs, &nOutputs);
if (status != BSEC_OK)
{
return;
}
// zeroOutputs();
if (nOutputs > 0)
{
auto outputTimestamp = outputs[0].time_stamp / 1000000; /* Convert from ns to ms */
for (uint8_t i = 0; i < nOutputs; i++)
{
switch (outputs[i].sensor_id)
@ -259,50 +226,16 @@ void bsecRun()
iaq = outputs[i].signal;
iaqAccuracy = outputs[i].accuracy;
break;
case BSEC_OUTPUT_STATIC_IAQ:
staticIaq = outputs[i].signal;
staticIaqAccuracy = outputs[i].accuracy;
break;
case BSEC_OUTPUT_CO2_EQUIVALENT:
co2Equivalent = outputs[i].signal;
co2Accuracy = outputs[i].accuracy;
break;
case BSEC_OUTPUT_BREATH_VOC_EQUIVALENT:
breathVocEquivalent = outputs[i].signal;
breathVocAccuracy = outputs[i].accuracy;
break;
case BSEC_OUTPUT_RAW_TEMPERATURE:
rawTemperature = outputs[i].signal;
break;
case BSEC_OUTPUT_RAW_PRESSURE:
pressure = outputs[i].signal;
break;
case BSEC_OUTPUT_RAW_HUMIDITY:
rawHumidity = outputs[i].signal;
break;
case BSEC_OUTPUT_RAW_GAS:
gasResistance = outputs[i].signal;
break;
case BSEC_OUTPUT_STABILIZATION_STATUS:
stabStatus = outputs[i].signal;
break;
case BSEC_OUTPUT_RUN_IN_STATUS:
runInStatus = outputs[i].signal;
break;
case BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE:
temperature = outputs[i].signal;
break;
case BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY:
humidity = outputs[i].signal;
break;
case BSEC_OUTPUT_COMPENSATED_GAS:
compGasValue = outputs[i].signal;
compGasAccuracy = outputs[i].accuracy;
break;
case BSEC_OUTPUT_GAS_PERCENTAGE:
gasPercentage = outputs[i].signal;
gasPercentageAcccuracy = outputs[i].accuracy;
break;
default:
break;
}
@ -310,6 +243,7 @@ void bsecRun()
}
}
//--------------------------------------------------------------------------------------------------
void printBmeSensorData()
{
renderer.clearAll();
@ -335,9 +269,9 @@ void printBmeSensorData()
renderer.render();
}
//--------------------------------------------------------------------------------------------------
void readStateFromEeprom()
{
uint8_t sizeOfData = *reinterpret_cast<uint8_t *>(EepromAddress);
if (sizeOfData != BSEC_MAX_STATE_BLOB_SIZE)
@ -352,13 +286,14 @@ void readStateFromEeprom()
bsec_set_state(bsecState, BSEC_MAX_STATE_BLOB_SIZE, workBuffer, sizeof(workBuffer));
}
//--------------------------------------------------------------------------------------------------
void writeStateToEeprom()
{
// only write calibrated state to EEPROM
if (iaqAccuracy != 3)
return;
uint32_t numberSerializedState = BSEC_MAX_STATE_BLOB_SIZE;
auto status = bsec_get_state(0, bsecState, BSEC_MAX_STATE_BLOB_SIZE, workBuffer,
BSEC_MAX_STATE_BLOB_SIZE, &numberSerializedState);
@ -367,18 +302,19 @@ void writeStateToEeprom()
HAL_FLASHEx_DATAEEPROM_Unlock();
// write size
// write state array size
HAL_FLASHEx_DATAEEPROM_Program(FLASH_TYPEPROGRAMDATA_BYTE, EepromAddress,
BSEC_MAX_STATE_BLOB_SIZE);
for (uint8_t i = 0; i < BSEC_MAX_STATE_BLOB_SIZE; i++)
{
HAL_FLASHEx_DATAEEPROM_Program(FLASH_TYPEPROGRAMDATA_BYTE, EepromAddress + i + 1,
HAL_FLASHEx_DATAEEPROM_Program(FLASH_TYPEPROGRAMDATA_BYTE, EepromAddress + 1 + i,
bsecState[i]);
}
HAL_FLASHEx_DATAEEPROM_Lock();
}
} // namespace
//--------------------------------------------------------------------------------------------------
extern "C" void sensorTask(void *)
@ -395,10 +331,10 @@ extern "C" void sensorTask(void *)
bsecRun();
printBmeSensorData();
if (counter++ >= 100)
if (counter++ >= 1000)
{
initDisplay();
counter = 0;
initDisplay();
writeStateToEeprom();
}

View file

@ -48,6 +48,7 @@ extern "C" void prvGetRegistersFromStack(uint32_t *pulFaultStackAddress)
#endif
}
//--------------------------------------------------------------------------------------------------
extern "C" void hard_fault_handler(void)
{
/*
@ -69,6 +70,7 @@ extern "C" void hard_fault_handler(void)
".syntax divided\n");
}
//--------------------------------------------------------------------------------------------------
extern "C" void vApplicationMallocFailedHook(void)
{
#ifdef DEBUG
@ -80,6 +82,7 @@ extern "C" void vApplicationMallocFailedHook(void)
#endif
}
//--------------------------------------------------------------------------------------------------
extern "C" void vApplicationStackOverflowHook(xTaskHandle *pxTask, signed portCHAR *pcTaskName)
{
(void)pxTask;

View file

@ -11,7 +11,7 @@
// oled display
SSD1306_SPI ssdSpiInterface;
Display display(ssdSpiInterface);
Renderer renderer(128, 4, display);
Renderer renderer(OledWidth, OledPages, display);
QueueHandle_t spiMutex = xSemaphoreCreateMutex();
QueueHandle_t spiBinary = xSemaphoreCreateBinary();