Add BSEC, show IAQ on display
This commit is contained in:
parent
548549f067
commit
1f322a8221
7 changed files with 1289 additions and 105 deletions
3
Makefile
3
Makefile
|
@ -5,7 +5,10 @@ DEVICE := stm32l152rc
|
||||||
DEFS += BME68X_DO_NOT_USE_FPU
|
DEFS += BME68X_DO_NOT_USE_FPU
|
||||||
DEFS += FW_USE_RTOS
|
DEFS += FW_USE_RTOS
|
||||||
|
|
||||||
|
LDLIBS := src/BSEC/libalgobsec.a
|
||||||
|
|
||||||
INCDIRS := \
|
INCDIRS := \
|
||||||
|
src/BSEC \
|
||||||
src/BME68x-Sensor-API \
|
src/BME68x-Sensor-API \
|
||||||
src/oled-driver/ \
|
src/oled-driver/ \
|
||||||
src/oled-driver/include \
|
src/oled-driver/include \
|
||||||
|
|
|
@ -1 +1 @@
|
||||||
Subproject commit e104fe56e58dfdf4d827f1344587dba7cf45bb01
|
Subproject commit 9f9b030c7236aa308252921973ec2abeb679c1bd
|
489
src/BSEC/bsec_datatypes.h
Normal file
489
src/BSEC/bsec_datatypes.h
Normal file
|
@ -0,0 +1,489 @@
|
||||||
|
/*
|
||||||
|
* Copyright (C) 2015, 2016, 2017 Robert Bosch. All Rights Reserved.
|
||||||
|
*
|
||||||
|
* Disclaimer
|
||||||
|
*
|
||||||
|
* Common:
|
||||||
|
* Bosch Sensortec products are developed for the consumer goods industry. They may only be used
|
||||||
|
* within the parameters of the respective valid product data sheet. Bosch Sensortec products are
|
||||||
|
* provided with the express understanding that there is no warranty of fitness for a particular purpose.
|
||||||
|
* They are not fit for use in life-sustaining, safety or security sensitive systems or any system or device
|
||||||
|
* that may lead to bodily harm or property damage if the system or device malfunctions. In addition,
|
||||||
|
* Bosch Sensortec products are not fit for use in products which interact with motor vehicle systems.
|
||||||
|
* The resale and/or use of products are at the purchasers own risk and his own responsibility. The
|
||||||
|
* examination of fitness for the intended use is the sole responsibility of the Purchaser.
|
||||||
|
*
|
||||||
|
* The purchaser shall indemnify Bosch Sensortec from all third party claims, including any claims for
|
||||||
|
* incidental, or consequential damages, arising from any product use not covered by the parameters of
|
||||||
|
* the respective valid product data sheet or not approved by Bosch Sensortec and reimburse Bosch
|
||||||
|
* Sensortec for all costs in connection with such claims.
|
||||||
|
*
|
||||||
|
* The purchaser must monitor the market for the purchased products, particularly with regard to
|
||||||
|
* product safety and inform Bosch Sensortec without delay of all security relevant incidents.
|
||||||
|
*
|
||||||
|
* Engineering Samples are marked with an asterisk (*) or (e). Samples may vary from the valid
|
||||||
|
* technical specifications of the product series. They are therefore not intended or fit for resale to third
|
||||||
|
* parties or for use in end products. Their sole purpose is internal client testing. The testing of an
|
||||||
|
* engineering sample may in no way replace the testing of a product series. Bosch Sensortec
|
||||||
|
* assumes no liability for the use of engineering samples. By accepting the engineering samples, the
|
||||||
|
* Purchaser agrees to indemnify Bosch Sensortec from all claims arising from the use of engineering
|
||||||
|
* samples.
|
||||||
|
*
|
||||||
|
* Special:
|
||||||
|
* This software module (hereinafter called "Software") and any information on application-sheets
|
||||||
|
* (hereinafter called "Information") is provided free of charge for the sole purpose to support your
|
||||||
|
* application work. The Software and Information is subject to the following terms and conditions:
|
||||||
|
*
|
||||||
|
* The Software is specifically designed for the exclusive use for Bosch Sensortec products by
|
||||||
|
* personnel who have special experience and training. Do not use this Software if you do not have the
|
||||||
|
* proper experience or training.
|
||||||
|
*
|
||||||
|
* This Software package is provided `` as is `` and without any expressed or implied warranties,
|
||||||
|
* including without limitation, the implied warranties of merchantability and fitness for a particular
|
||||||
|
* purpose.
|
||||||
|
*
|
||||||
|
* Bosch Sensortec and their representatives and agents deny any liability for the functional impairment
|
||||||
|
* of this Software in terms of fitness, performance and safety. Bosch Sensortec and their
|
||||||
|
* representatives and agents shall not be liable for any direct or indirect damages or injury, except as
|
||||||
|
* otherwise stipulated in mandatory applicable law.
|
||||||
|
*
|
||||||
|
* The Information provided is believed to be accurate and reliable. Bosch Sensortec assumes no
|
||||||
|
* responsibility for the consequences of use of such Information nor for any infringement of patents or
|
||||||
|
* other rights of third parties which may result from its use. No license is granted by implication or
|
||||||
|
* otherwise under any patent or patent rights of Bosch. Specifications mentioned in the Information are
|
||||||
|
* subject to change without notice.
|
||||||
|
*
|
||||||
|
* It is not allowed to deliver the source code of the Software to any third party without permission of
|
||||||
|
* Bosch Sensortec.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @file bsec_datatypes.h
|
||||||
|
*
|
||||||
|
* @brief
|
||||||
|
* Contains the data types used by BSEC
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef __BSEC_DATATYPES_H__
|
||||||
|
#define __BSEC_DATATYPES_H__
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
extern "C"
|
||||||
|
{
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/*!
|
||||||
|
* @addtogroup bsec_interface BSEC C Interface
|
||||||
|
* @{*/
|
||||||
|
|
||||||
|
#ifdef __KERNEL__
|
||||||
|
#include <linux/types.h>
|
||||||
|
#endif
|
||||||
|
#include <stdint.h>
|
||||||
|
#include <stddef.h>
|
||||||
|
|
||||||
|
#define BSEC_MAX_WORKBUFFER_SIZE (2048) /*!< Maximum size (in bytes) of the work buffer */
|
||||||
|
#define BSEC_MAX_PHYSICAL_SENSOR (8) /*!< Number of physical sensors that need allocated space before calling bsec_update_subscription() */
|
||||||
|
#define BSEC_MAX_PROPERTY_BLOB_SIZE (454) /*!< Maximum size (in bytes) of the data blobs returned by bsec_get_configuration() */
|
||||||
|
#define BSEC_MAX_STATE_BLOB_SIZE (139) /*!< Maximum size (in bytes) of the data blobs returned by bsec_get_state()*/
|
||||||
|
#define BSEC_SAMPLE_RATE_DISABLED (65535.0f) /*!< Sample rate of a disabled sensor */
|
||||||
|
#define BSEC_SAMPLE_RATE_ULP (0.0033333f) /*!< Sample rate in case of Ultra Low Power Mode */
|
||||||
|
#define BSEC_SAMPLE_RATE_CONTINUOUS (1.0f) /*!< Sample rate in case of Continuous Mode */
|
||||||
|
#define BSEC_SAMPLE_RATE_LP (0.33333f) /*!< Sample rate in case of Low Power Mode */
|
||||||
|
#define BSEC_SAMPLE_RATE_ULP_MEASUREMENT_ON_DEMAND (0.0f) /*!< Input value used to trigger an extra measurment (ULP plus) */
|
||||||
|
|
||||||
|
#define BSEC_PROCESS_PRESSURE (1 << (BSEC_INPUT_PRESSURE-1)) /*!< process_data bitfield constant for pressure @sa bsec_bme_settings_t */
|
||||||
|
#define BSEC_PROCESS_TEMPERATURE (1 << (BSEC_INPUT_TEMPERATURE-1)) /*!< process_data bitfield constant for temperature @sa bsec_bme_settings_t */
|
||||||
|
#define BSEC_PROCESS_HUMIDITY (1 << (BSEC_INPUT_HUMIDITY-1)) /*!< process_data bitfield constant for humidity @sa bsec_bme_settings_t */
|
||||||
|
#define BSEC_PROCESS_GAS (1 << (BSEC_INPUT_GASRESISTOR-1)) /*!< process_data bitfield constant for gas sensor @sa bsec_bme_settings_t */
|
||||||
|
#define BSEC_NUMBER_OUTPUTS (14) /*!< Number of outputs, depending on solution */
|
||||||
|
#define BSEC_OUTPUT_INCLUDED (1210863) /*!< bitfield that indicates which outputs are included in the solution */
|
||||||
|
|
||||||
|
/*!
|
||||||
|
* @brief Enumeration for input (physical) sensors.
|
||||||
|
*
|
||||||
|
* Used to populate bsec_input_t::sensor_id. It is also used in bsec_sensor_configuration_t::sensor_id structs
|
||||||
|
* returned in the parameter required_sensor_settings of bsec_update_subscription().
|
||||||
|
*
|
||||||
|
* @sa bsec_sensor_configuration_t @sa bsec_input_t
|
||||||
|
*/
|
||||||
|
typedef enum
|
||||||
|
{
|
||||||
|
/**
|
||||||
|
* @brief Pressure sensor output of BMExxx [Pa]
|
||||||
|
*/
|
||||||
|
BSEC_INPUT_PRESSURE = 1,
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Humidity sensor output of BMExxx [%]
|
||||||
|
*
|
||||||
|
* @note Relative humidity strongly depends on the temperature (it is measured at). It may require a conversion to
|
||||||
|
* the temperature outside of the device.
|
||||||
|
*
|
||||||
|
* @sa bsec_virtual_sensor_t
|
||||||
|
*/
|
||||||
|
BSEC_INPUT_HUMIDITY = 2,
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Temperature sensor output of BMExxx [degrees Celsius]
|
||||||
|
*
|
||||||
|
* @note The BME680 is factory trimmed, thus the temperature sensor of the BME680 is very accurate.
|
||||||
|
* The temperature value is a very local measurement value and can be influenced by external heat sources.
|
||||||
|
*
|
||||||
|
* @sa bsec_virtual_sensor_t
|
||||||
|
*/
|
||||||
|
BSEC_INPUT_TEMPERATURE = 3,
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Gas sensor resistance output of BMExxx [Ohm]
|
||||||
|
*
|
||||||
|
* The resistance value changes due to varying VOC concentrations (the higher the concentration of reducing VOCs,
|
||||||
|
* the lower the resistance and vice versa).
|
||||||
|
*/
|
||||||
|
BSEC_INPUT_GASRESISTOR = 4, /*!< */
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Additional input for device heat compensation
|
||||||
|
*
|
||||||
|
* IAQ solution: The value is subtracted from ::BSEC_INPUT_TEMPERATURE to compute
|
||||||
|
* ::BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE.
|
||||||
|
*
|
||||||
|
* ALL solution: Generic heat source 1
|
||||||
|
*
|
||||||
|
* @sa bsec_virtual_sensor_t
|
||||||
|
*/
|
||||||
|
BSEC_INPUT_HEATSOURCE = 14,
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Additional input for device heat compensation 8
|
||||||
|
*
|
||||||
|
* Generic heat source 8
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Additional input that disables baseline tracker
|
||||||
|
*
|
||||||
|
* 0 - Normal
|
||||||
|
* 1 - Event 1
|
||||||
|
* 2 - Event 2
|
||||||
|
*/
|
||||||
|
BSEC_INPUT_DISABLE_BASELINE_TRACKER = 23,
|
||||||
|
|
||||||
|
} bsec_physical_sensor_t;
|
||||||
|
|
||||||
|
/*!
|
||||||
|
* @brief Enumeration for output (virtual) sensors
|
||||||
|
*
|
||||||
|
* Used to populate bsec_output_t::sensor_id. It is also used in bsec_sensor_configuration_t::sensor_id structs
|
||||||
|
* passed in the parameter requested_virtual_sensors of bsec_update_subscription().
|
||||||
|
*
|
||||||
|
* @sa bsec_sensor_configuration_t @sa bsec_output_t
|
||||||
|
*/
|
||||||
|
typedef enum
|
||||||
|
{
|
||||||
|
/**
|
||||||
|
* @brief Indoor-air-quality estimate [0-500]
|
||||||
|
*
|
||||||
|
* Indoor-air-quality (IAQ) gives an indication of the relative change in ambient TVOCs detected by BME680.
|
||||||
|
*
|
||||||
|
* @note The IAQ scale ranges from 0 (clean air) to 500 (heavily polluted air). During operation, algorithms
|
||||||
|
* automatically calibrate and adapt themselves to the typical environments where the sensor is operated
|
||||||
|
* (e.g., home, workplace, inside a car, etc.).This automatic background calibration ensures that users experience
|
||||||
|
* consistent IAQ performance. The calibration process considers the recent measurement history (typ. up to four
|
||||||
|
* days) to ensure that IAQ=25 corresponds to typical good air and IAQ=250 indicates typical polluted air.
|
||||||
|
*/
|
||||||
|
BSEC_OUTPUT_IAQ = 1,
|
||||||
|
BSEC_OUTPUT_STATIC_IAQ = 2, /*!< Unscaled indoor-air-quality estimate */
|
||||||
|
BSEC_OUTPUT_CO2_EQUIVALENT = 3, /*!< co2 equivalent estimate [ppm] */
|
||||||
|
BSEC_OUTPUT_BREATH_VOC_EQUIVALENT = 4, /*!< breath VOC concentration estimate [ppm] */
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Temperature sensor signal [degrees Celsius]
|
||||||
|
*
|
||||||
|
* Temperature directly measured by BME680 in degree Celsius.
|
||||||
|
*
|
||||||
|
* @note This value is cross-influenced by the sensor heating and device specific heating.
|
||||||
|
*/
|
||||||
|
BSEC_OUTPUT_RAW_TEMPERATURE = 6,
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Pressure sensor signal [Pa]
|
||||||
|
*
|
||||||
|
* Pressure directly measured by the BME680 in Pa.
|
||||||
|
*/
|
||||||
|
BSEC_OUTPUT_RAW_PRESSURE = 7,
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Relative humidity sensor signal [%]
|
||||||
|
*
|
||||||
|
* Relative humidity directly measured by the BME680 in %.
|
||||||
|
*
|
||||||
|
* @note This value is cross-influenced by the sensor heating and device specific heating.
|
||||||
|
*/
|
||||||
|
BSEC_OUTPUT_RAW_HUMIDITY = 8,
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Gas sensor signal [Ohm]
|
||||||
|
*
|
||||||
|
* Gas resistance measured directly by the BME680 in Ohm.The resistance value changes due to varying VOC
|
||||||
|
* concentrations (the higher the concentration of reducing VOCs, the lower the resistance and vice versa).
|
||||||
|
*/
|
||||||
|
BSEC_OUTPUT_RAW_GAS = 9,
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Gas sensor stabilization status [boolean]
|
||||||
|
*
|
||||||
|
* Indicates initial stabilization status of the gas sensor element: stabilization is ongoing (0) or stabilization
|
||||||
|
* is finished (1).
|
||||||
|
*/
|
||||||
|
BSEC_OUTPUT_STABILIZATION_STATUS = 12,
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Gas sensor run-in status [boolean]
|
||||||
|
*
|
||||||
|
* Indicates power-on stabilization status of the gas sensor element: stabilization is ongoing (0) or stabilization
|
||||||
|
* is finished (1).
|
||||||
|
*/
|
||||||
|
BSEC_OUTPUT_RUN_IN_STATUS = 13,
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Sensor heat compensated temperature [degrees Celsius]
|
||||||
|
*
|
||||||
|
* Temperature measured by BME680 which is compensated for the influence of sensor (heater) in degree Celsius.
|
||||||
|
* The self heating introduced by the heater is depending on the sensor operation mode and the sensor supply voltage.
|
||||||
|
*
|
||||||
|
*
|
||||||
|
* @note IAQ solution: In addition, the temperature output can be compensated by an user defined value
|
||||||
|
* (::BSEC_INPUT_HEATSOURCE in degrees Celsius), which represents the device specific self-heating.
|
||||||
|
*
|
||||||
|
* Thus, the value is calculated as follows:
|
||||||
|
* * IAQ solution: ```BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE = ::BSEC_INPUT_TEMPERATURE - function(sensor operation mode, sensor supply voltage) - ::BSEC_INPUT_HEATSOURCE```
|
||||||
|
* * other solutions: ```::BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE = ::BSEC_INPUT_TEMPERATURE - function(sensor operation mode, sensor supply voltage)```
|
||||||
|
*
|
||||||
|
* The self-heating in operation mode BSEC_SAMPLE_RATE_ULP is negligible.
|
||||||
|
* The self-heating in operation mode BSEC_SAMPLE_RATE_LP is supported for 1.8V by default (no config file required). If the BME680 sensor supply voltage is 3.3V, the IoT_LP_3_3V.config shall be used.
|
||||||
|
*/
|
||||||
|
BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE = 14,
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Sensor heat compensated humidity [%]
|
||||||
|
*
|
||||||
|
* Relative measured by BME680 which is compensated for the influence of sensor (heater) in %.
|
||||||
|
*
|
||||||
|
* It converts the ::BSEC_INPUT_HUMIDITY from temperature ::BSEC_INPUT_TEMPERATURE to temperature
|
||||||
|
* ::BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE.
|
||||||
|
*
|
||||||
|
* @note IAQ solution: If ::BSEC_INPUT_HEATSOURCE is used for device specific temperature compensation, it will be
|
||||||
|
* effective for ::BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY too.
|
||||||
|
*/
|
||||||
|
BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY = 15,
|
||||||
|
|
||||||
|
BSEC_OUTPUT_COMPENSATED_GAS = 18, /*!< Reserved internal debug output */
|
||||||
|
BSEC_OUTPUT_GAS_PERCENTAGE = 21 /*!< percentage of min and max filtered gas value [%] */
|
||||||
|
} bsec_virtual_sensor_t;
|
||||||
|
|
||||||
|
/*!
|
||||||
|
* @brief Enumeration for function return codes
|
||||||
|
*/
|
||||||
|
typedef enum
|
||||||
|
{
|
||||||
|
BSEC_OK = 0, /*!< Function execution successful */
|
||||||
|
BSEC_E_DOSTEPS_INVALIDINPUT = -1, /*!< Input (physical) sensor id passed to bsec_do_steps() is not in the valid range or not valid for requested virtual sensor */
|
||||||
|
BSEC_E_DOSTEPS_VALUELIMITS = -2, /*!< Value of input (physical) sensor signal passed to bsec_do_steps() is not in the valid range */
|
||||||
|
BSEC_E_DOSTEPS_DUPLICATEINPUT = -6, /*!< Duplicate input (physical) sensor ids passed as input to bsec_do_steps() */
|
||||||
|
BSEC_I_DOSTEPS_NOOUTPUTSRETURNABLE = 2, /*!< No memory allocated to hold return values from bsec_do_steps(), i.e., n_outputs == 0 */
|
||||||
|
BSEC_W_DOSTEPS_EXCESSOUTPUTS = 3, /*!< Not enough memory allocated to hold return values from bsec_do_steps(), i.e., n_outputs < maximum number of requested output (virtual) sensors */
|
||||||
|
BSEC_W_DOSTEPS_TSINTRADIFFOUTOFRANGE = 4, /*!< Duplicate timestamps passed to bsec_do_steps() */
|
||||||
|
BSEC_E_SU_WRONGDATARATE = -10, /*!< The sample_rate of the requested output (virtual) sensor passed to bsec_update_subscription() is zero */
|
||||||
|
BSEC_E_SU_SAMPLERATELIMITS = -12, /*!< The sample_rate of the requested output (virtual) sensor passed to bsec_update_subscription() does not match with the sampling rate allowed for that sensor */
|
||||||
|
BSEC_E_SU_DUPLICATEGATE = -13, /*!< Duplicate output (virtual) sensor ids requested through bsec_update_subscription() */
|
||||||
|
BSEC_E_SU_INVALIDSAMPLERATE = -14, /*!< The sample_rate of the requested output (virtual) sensor passed to bsec_update_subscription() does not fall within the global minimum and maximum sampling rates */
|
||||||
|
BSEC_E_SU_GATECOUNTEXCEEDSARRAY = -15, /*!< Not enough memory allocated to hold returned input (physical) sensor data from bsec_update_subscription(), i.e., n_required_sensor_settings < #BSEC_MAX_PHYSICAL_SENSOR */
|
||||||
|
BSEC_E_SU_SAMPLINTVLINTEGERMULT = -16, /*!< The sample_rate of the requested output (virtual) sensor passed to bsec_update_subscription() is not correct */
|
||||||
|
BSEC_E_SU_MULTGASSAMPLINTVL = -17, /*!< The sample_rate of the requested output (virtual), which requires the gas sensor, is not equal to the sample_rate that the gas sensor is being operated */
|
||||||
|
BSEC_E_SU_HIGHHEATERONDURATION = -18, /*!< The duration of one measurement is longer than the requested sampling interval */
|
||||||
|
BSEC_W_SU_UNKNOWNOUTPUTGATE = 10, /*!< Output (virtual) sensor id passed to bsec_update_subscription() is not in the valid range; e.g., n_requested_virtual_sensors > actual number of output (virtual) sensors requested */
|
||||||
|
BSEC_W_SU_MODINNOULP = 11, /*!< ULP plus can not be requested in non-ulp mode */ /*MOD_ONLY*/
|
||||||
|
BSEC_I_SU_SUBSCRIBEDOUTPUTGATES = 12, /*!< No output (virtual) sensor data were requested via bsec_update_subscription() */
|
||||||
|
BSEC_E_PARSE_SECTIONEXCEEDSWORKBUFFER = -32, /*!< n_work_buffer_size passed to bsec_set_[configuration/state]() not sufficient */
|
||||||
|
BSEC_E_CONFIG_FAIL = -33, /*!< Configuration failed */
|
||||||
|
BSEC_E_CONFIG_VERSIONMISMATCH = -34, /*!< Version encoded in serialized_[settings/state] passed to bsec_set_[configuration/state]() does not match with current version */
|
||||||
|
BSEC_E_CONFIG_FEATUREMISMATCH = -35, /*!< Enabled features encoded in serialized_[settings/state] passed to bsec_set_[configuration/state]() does not match with current library implementation */
|
||||||
|
BSEC_E_CONFIG_CRCMISMATCH = -36, /*!< serialized_[settings/state] passed to bsec_set_[configuration/state]() is corrupted */
|
||||||
|
BSEC_E_CONFIG_EMPTY = -37, /*!< n_serialized_[settings/state] passed to bsec_set_[configuration/state]() is to short to be valid */
|
||||||
|
BSEC_E_CONFIG_INSUFFICIENTWORKBUFFER = -38, /*!< Provided work_buffer is not large enough to hold the desired string */
|
||||||
|
BSEC_E_CONFIG_INVALIDSTRINGSIZE = -40, /*!< String size encoded in configuration/state strings passed to bsec_set_[configuration/state]() does not match with the actual string size n_serialized_[settings/state] passed to these functions */
|
||||||
|
BSEC_E_CONFIG_INSUFFICIENTBUFFER = -41, /*!< String buffer insufficient to hold serialized data from BSEC library */
|
||||||
|
BSEC_E_SET_INVALIDCHANNELIDENTIFIER = -100, /*!< Internal error code, size of work buffer in setConfig must be set to BSEC_MAX_WORKBUFFER_SIZE */
|
||||||
|
BSEC_E_SET_INVALIDLENGTH = -104, /*!< Internal error code */
|
||||||
|
BSEC_W_SC_CALL_TIMING_VIOLATION = 100, /*!< Difference between actual and defined sampling intervals of bsec_sensor_control() greater than allowed */
|
||||||
|
BSEC_W_SC_MODEXCEEDULPTIMELIMIT = 101, /*!< ULP plus is not allowed because an ULP measurement just took or will take place */ /*MOD_ONLY*/
|
||||||
|
BSEC_W_SC_MODINSUFFICIENTWAITTIME = 102 /*!< ULP plus is not allowed because not sufficient time passed since last ULP plus */ /*MOD_ONLY*/
|
||||||
|
} bsec_library_return_t;
|
||||||
|
|
||||||
|
/*!
|
||||||
|
* @brief Structure containing the version information
|
||||||
|
*
|
||||||
|
* Please note that configuration and state strings are coded to a specific version and will not be accepted by other
|
||||||
|
* versions of BSEC.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
typedef struct
|
||||||
|
{
|
||||||
|
uint8_t major; /**< @brief Major version */
|
||||||
|
uint8_t minor; /**< @brief Minor version */
|
||||||
|
uint8_t major_bugfix; /**< @brief Major bug fix version */
|
||||||
|
uint8_t minor_bugfix; /**< @brief Minor bug fix version */
|
||||||
|
} bsec_version_t;
|
||||||
|
|
||||||
|
/*!
|
||||||
|
* @brief Structure describing an input sample to the library
|
||||||
|
*
|
||||||
|
* Each input sample is provided to BSEC as an element in a struct array of this type. Timestamps must be provided
|
||||||
|
* in nanosecond resolution. Moreover, duplicate timestamps for subsequent samples are not allowed and will results in
|
||||||
|
* an error code being returned from bsec_do_steps().
|
||||||
|
*
|
||||||
|
* The meaning unit of the signal field are determined by the bsec_input_t::sensor_id field content. Possible
|
||||||
|
* bsec_input_t::sensor_id values and and their meaning are described in ::bsec_physical_sensor_t.
|
||||||
|
*
|
||||||
|
* @sa bsec_physical_sensor_t
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
typedef struct
|
||||||
|
{
|
||||||
|
/**
|
||||||
|
* @brief Time stamp in nanosecond resolution [ns]
|
||||||
|
*
|
||||||
|
* Timestamps must be provided as non-repeating and increasing values. They can have their 0-points at system start or
|
||||||
|
* at a defined wall-clock time (e.g., 01-Jan-1970 00:00:00)
|
||||||
|
*/
|
||||||
|
int64_t time_stamp;
|
||||||
|
float signal; /*!< @brief Signal sample in the unit defined for the respective sensor_id @sa bsec_physical_sensor_t */
|
||||||
|
uint8_t signal_dimensions; /*!< @brief Signal dimensions (reserved for future use, shall be set to 1) */
|
||||||
|
uint8_t sensor_id; /*!< @brief Identifier of physical sensor @sa bsec_physical_sensor_t */
|
||||||
|
} bsec_input_t;
|
||||||
|
|
||||||
|
/*!
|
||||||
|
* @brief Structure describing an output sample of the library
|
||||||
|
*
|
||||||
|
* Each output sample is returned from BSEC by populating the element of a struct array of this type. The contents of
|
||||||
|
* the signal field is defined by the supplied bsec_output_t::sensor_id. Possible output
|
||||||
|
* bsec_output_t::sensor_id values are defined in ::bsec_virtual_sensor_t.
|
||||||
|
*
|
||||||
|
* @sa bsec_virtual_sensor_t
|
||||||
|
*/
|
||||||
|
typedef struct
|
||||||
|
{
|
||||||
|
int64_t time_stamp; /*!< @brief Time stamp in nanosecond resolution as provided as input [ns] */
|
||||||
|
float signal; /*!< @brief Signal sample in the unit defined for the respective bsec_output_t::sensor_id @sa bsec_virtual_sensor_t */
|
||||||
|
uint8_t signal_dimensions; /*!< @brief Signal dimensions (reserved for future use, shall be set to 1) */
|
||||||
|
uint8_t sensor_id; /*!< @brief Identifier of virtual sensor @sa bsec_virtual_sensor_t */
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Accuracy status 0-3
|
||||||
|
*
|
||||||
|
* Some virtual sensors provide a value in the accuracy field. If this is the case, the meaning of the field is as
|
||||||
|
* follows:
|
||||||
|
*
|
||||||
|
* | Name | Value | Accuracy description |
|
||||||
|
* |----------------------------|-------|-------------------------------------------------------------------------------------------------------------|
|
||||||
|
* | UNRELIABLE | 0 | Sensor data is unreliable, the sensor must be calibrated |
|
||||||
|
* | LOW_ACCURACY | 1 | Low accuracy, sensor should be calibrated |
|
||||||
|
* | MEDIUM_ACCURACY | 2 | Medium accuracy, sensor calibration may improve performance |
|
||||||
|
* | HIGH_ACCURACY | 3 | High accuracy |
|
||||||
|
*
|
||||||
|
* For example:
|
||||||
|
*
|
||||||
|
* - Ambient temperature accuracy is derived from change in the temperature in 1 minute.
|
||||||
|
*
|
||||||
|
* | Virtual sensor | Value | Accuracy description |
|
||||||
|
* |--------------------- |-------|------------------------------------------------------------------------------|
|
||||||
|
* | Ambient temperature | 0 | The difference in ambient temperature is greater than 4 degree in one minute |
|
||||||
|
* | | 1 | The difference in ambient temperature is less than 4 degree in one minute |
|
||||||
|
* | | 2 | The difference in ambient temperature is less than 3 degree in one minute |
|
||||||
|
* | | 3 | The difference in ambient temperature is less than 2 degree in one minute |
|
||||||
|
*
|
||||||
|
* - IAQ accuracy indicator will notify the user when she/he should initiate a calibration process. Calibration is
|
||||||
|
* performed automatically in the background if the sensor is exposed to clean and polluted air for approximately
|
||||||
|
* 30 minutes each.
|
||||||
|
*
|
||||||
|
* | Virtual sensor | Value | Accuracy description |
|
||||||
|
* |----------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||||
|
* | IAQ | 0 | Stabilization / run-in ongoing |
|
||||||
|
* | | 1 | Low accuracy,to reach high accuracy(3),please expose sensor once to good air (e.g. outdoor air) and bad air (e.g. box with exhaled breath) for auto-trimming |
|
||||||
|
* | | 2 | Medium accuracy: auto-trimming ongoing |
|
||||||
|
* | | 3 | High accuracy |
|
||||||
|
*/
|
||||||
|
uint8_t accuracy;
|
||||||
|
} bsec_output_t;
|
||||||
|
|
||||||
|
/*!
|
||||||
|
* @brief Structure describing sample rate of physical/virtual sensors
|
||||||
|
*
|
||||||
|
* This structure is used together with bsec_update_subscription() to enable BSEC outputs and to retrieve information
|
||||||
|
* about the sample rates used for BSEC inputs.
|
||||||
|
*/
|
||||||
|
typedef struct
|
||||||
|
{
|
||||||
|
/**
|
||||||
|
* @brief Sample rate of the virtual or physical sensor in Hertz [Hz]
|
||||||
|
*
|
||||||
|
* Only supported sample rates are allowed.
|
||||||
|
*/
|
||||||
|
float sample_rate;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Identifier of the virtual or physical sensor
|
||||||
|
*
|
||||||
|
* The meaning of this field changes depending on whether the structs are as the requested_virtual_sensors argument
|
||||||
|
* to bsec_update_subscription() or as the required_sensor_settings argument.
|
||||||
|
*
|
||||||
|
* | bsec_update_subscription() argument | sensor_id field interpretation |
|
||||||
|
* |-------------------------------------|--------------------------------|
|
||||||
|
* | requested_virtual_sensors | ::bsec_virtual_sensor_t |
|
||||||
|
* | required_sensor_settings | ::bsec_physical_sensor_t |
|
||||||
|
*
|
||||||
|
* @sa bsec_physical_sensor_t
|
||||||
|
* @sa bsec_virtual_sensor_t
|
||||||
|
*/
|
||||||
|
uint8_t sensor_id;
|
||||||
|
} bsec_sensor_configuration_t;
|
||||||
|
|
||||||
|
/*!
|
||||||
|
* @brief Structure returned by bsec_sensor_control() to configure BMExxx sensor
|
||||||
|
*
|
||||||
|
* This structure contains settings that must be used to configure the BMExxx to perform a forced-mode measurement.
|
||||||
|
* A measurement should only be executed if bsec_bme_settings_t::trigger_measurement is 1. If so, the oversampling
|
||||||
|
* settings for temperature, humidity, and pressure should be set to the provided settings provided in
|
||||||
|
* bsec_bme_settings_t::temperature_oversampling, bsec_bme_settings_t::humidity_oversampling, and
|
||||||
|
* bsec_bme_settings_t::pressure_oversampling, respectively.
|
||||||
|
*
|
||||||
|
* In case of bsec_bme_settings_t::run_gas = 1, the gas sensor must be enabled with the provided
|
||||||
|
* bsec_bme_settings_t::heater_temperature and bsec_bme_settings_t::heating_duration settings.
|
||||||
|
*/
|
||||||
|
typedef struct
|
||||||
|
{
|
||||||
|
int64_t next_call; /*!< @brief Time stamp of the next call of the sensor_control*/
|
||||||
|
uint32_t process_data; /*!< @brief Bit field describing which data is to be passed to bsec_do_steps() @sa BSEC_PROCESS_* */
|
||||||
|
uint16_t heater_temperature; /*!< @brief Heating temperature [degrees Celsius] */
|
||||||
|
uint16_t heating_duration; /*!< @brief Heating duration [ms] */
|
||||||
|
uint8_t run_gas; /*!< @brief Enable gas measurements [0/1] */
|
||||||
|
uint8_t pressure_oversampling; /*!< @brief Pressure oversampling settings [0-5] */
|
||||||
|
uint8_t temperature_oversampling; /*!< @brief Temperature oversampling settings [0-5] */
|
||||||
|
uint8_t humidity_oversampling; /*!< @brief Humidity oversampling settings [0-5] */
|
||||||
|
uint8_t trigger_measurement; /*!< @brief Trigger a forced measurement with these settings now [0/1] */
|
||||||
|
} bsec_bme_settings_t;
|
||||||
|
|
||||||
|
/* internal defines and backward compatibility */
|
||||||
|
#define BSEC_STRUCT_NAME Bsec /*!< Internal struct name */
|
||||||
|
|
||||||
|
/*@}*/
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#endif
|
564
src/BSEC/bsec_interface.h
Normal file
564
src/BSEC/bsec_interface.h
Normal file
|
@ -0,0 +1,564 @@
|
||||||
|
/*
|
||||||
|
* Copyright (C) 2015, 2016, 2017 Robert Bosch. All Rights Reserved.
|
||||||
|
*
|
||||||
|
* Disclaimer
|
||||||
|
*
|
||||||
|
* Common:
|
||||||
|
* Bosch Sensortec products are developed for the consumer goods industry. They may only be used
|
||||||
|
* within the parameters of the respective valid product data sheet. Bosch Sensortec products are
|
||||||
|
* provided with the express understanding that there is no warranty of fitness for a particular purpose.
|
||||||
|
* They are not fit for use in life-sustaining, safety or security sensitive systems or any system or device
|
||||||
|
* that may lead to bodily harm or property damage if the system or device malfunctions. In addition,
|
||||||
|
* Bosch Sensortec products are not fit for use in products which interact with motor vehicle systems.
|
||||||
|
* The resale and/or use of products are at the purchasers own risk and his own responsibility. The
|
||||||
|
* examination of fitness for the intended use is the sole responsibility of the Purchaser.
|
||||||
|
*
|
||||||
|
* The purchaser shall indemnify Bosch Sensortec from all third party claims, including any claims for
|
||||||
|
* incidental, or consequential damages, arising from any product use not covered by the parameters of
|
||||||
|
* the respective valid product data sheet or not approved by Bosch Sensortec and reimburse Bosch
|
||||||
|
* Sensortec for all costs in connection with such claims.
|
||||||
|
*
|
||||||
|
* The purchaser must monitor the market for the purchased products, particularly with regard to
|
||||||
|
* product safety and inform Bosch Sensortec without delay of all security relevant incidents.
|
||||||
|
*
|
||||||
|
* Engineering Samples are marked with an asterisk (*) or (e). Samples may vary from the valid
|
||||||
|
* technical specifications of the product series. They are therefore not intended or fit for resale to third
|
||||||
|
* parties or for use in end products. Their sole purpose is internal client testing. The testing of an
|
||||||
|
* engineering sample may in no way replace the testing of a product series. Bosch Sensortec
|
||||||
|
* assumes no liability for the use of engineering samples. By accepting the engineering samples, the
|
||||||
|
* Purchaser agrees to indemnify Bosch Sensortec from all claims arising from the use of engineering
|
||||||
|
* samples.
|
||||||
|
*
|
||||||
|
* Special:
|
||||||
|
* This software module (hereinafter called "Software") and any information on application-sheets
|
||||||
|
* (hereinafter called "Information") is provided free of charge for the sole purpose to support your
|
||||||
|
* application work. The Software and Information is subject to the following terms and conditions:
|
||||||
|
*
|
||||||
|
* The Software is specifically designed for the exclusive use for Bosch Sensortec products by
|
||||||
|
* personnel who have special experience and training. Do not use this Software if you do not have the
|
||||||
|
* proper experience or training.
|
||||||
|
*
|
||||||
|
* This Software package is provided `` as is `` and without any expressed or implied warranties,
|
||||||
|
* including without limitation, the implied warranties of merchantability and fitness for a particular
|
||||||
|
* purpose.
|
||||||
|
*
|
||||||
|
* Bosch Sensortec and their representatives and agents deny any liability for the functional impairment
|
||||||
|
* of this Software in terms of fitness, performance and safety. Bosch Sensortec and their
|
||||||
|
* representatives and agents shall not be liable for any direct or indirect damages or injury, except as
|
||||||
|
* otherwise stipulated in mandatory applicable law.
|
||||||
|
*
|
||||||
|
* The Information provided is believed to be accurate and reliable. Bosch Sensortec assumes no
|
||||||
|
* responsibility for the consequences of use of such Information nor for any infringement of patents or
|
||||||
|
* other rights of third parties which may result from its use. No license is granted by implication or
|
||||||
|
* otherwise under any patent or patent rights of Bosch. Specifications mentioned in the Information are
|
||||||
|
* subject to change without notice.
|
||||||
|
*
|
||||||
|
* It is not allowed to deliver the source code of the Software to any third party without permission of
|
||||||
|
* Bosch Sensortec.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
/*!
|
||||||
|
*
|
||||||
|
* @file bsec_interface.h
|
||||||
|
*
|
||||||
|
* @brief
|
||||||
|
* Contains the API for BSEC
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
#ifndef __BSEC_INTERFACE_H__
|
||||||
|
#define __BSEC_INTERFACE_H__
|
||||||
|
|
||||||
|
#include "bsec_datatypes.h"
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
extern "C" {
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/*! @addtogroup bsec_interface BSEC C Interface
|
||||||
|
* @brief Interfaces of BSEC signal processing library
|
||||||
|
*
|
||||||
|
* ### Interface usage
|
||||||
|
*
|
||||||
|
* The following provides a short overview on the typical operation sequence for BSEC.
|
||||||
|
*
|
||||||
|
* - Initialization of the library
|
||||||
|
*
|
||||||
|
* | Steps | Function |
|
||||||
|
* |---------------------------------------------------------------------|--------------------------|
|
||||||
|
* | Initialization of library | bsec_init() |
|
||||||
|
* | Update configuration settings (optional) | bsec_set_configuration() |
|
||||||
|
* | Restore the state of the library (optional) | bsec_set_state() |
|
||||||
|
*
|
||||||
|
*
|
||||||
|
* - The following function is called to enable output signals and define their sampling rate / operation mode.
|
||||||
|
*
|
||||||
|
* | Steps | Function |
|
||||||
|
* |---------------------------------------------|----------------------------|
|
||||||
|
* | Enable library outputs with specified mode | bsec_update_subscription() |
|
||||||
|
*
|
||||||
|
*
|
||||||
|
* - This table describes the main processing loop.
|
||||||
|
*
|
||||||
|
* | Steps | Function |
|
||||||
|
* |-------------------------------------------|----------------------------------|
|
||||||
|
* | Retrieve sensor settings to be used | bsec_sensor_control() |
|
||||||
|
* | Configure sensor and trigger measurement | See BME680 API and example codes |
|
||||||
|
* | Read results from sensor | See BME680 API and example codes |
|
||||||
|
* | Perform signal processing | bsec_do_steps() |
|
||||||
|
*
|
||||||
|
*
|
||||||
|
* - Before shutting down the system, the current state of BSEC can be retrieved and can then be used during
|
||||||
|
* re-initialization to continue processing.
|
||||||
|
*
|
||||||
|
* | Steps | Function |
|
||||||
|
* |----------------------------------------|-------------------|
|
||||||
|
* | To retrieve the current library state | bsec_get_state() |
|
||||||
|
*
|
||||||
|
*
|
||||||
|
*
|
||||||
|
* ### Configuration and state
|
||||||
|
*
|
||||||
|
* Values of variables belonging to a BSEC instance are divided into two groups:
|
||||||
|
* - Values **not updated by processing** of signals belong to the **configuration group**. If available, BSEC can be
|
||||||
|
* configured before use with a customer specific configuration string.
|
||||||
|
* - Values **updated during processing** are member of the **state group**. Saving and restoring of the state of BSEC
|
||||||
|
* is necessary to maintain previously estimated sensor models and baseline information which is important for best
|
||||||
|
* performance of the gas sensor outputs.
|
||||||
|
*
|
||||||
|
* @note BSEC library consists of adaptive algorithms which models the gas sensor which improves its performance over
|
||||||
|
* the time. These will be lost if library is initialized due to system reset. In order to avoid this situation
|
||||||
|
* library state shall be stored in non volatile memory so that it can be loaded after system reset.
|
||||||
|
*
|
||||||
|
*
|
||||||
|
* @{
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
/*!
|
||||||
|
* @brief Return the version information of BSEC library
|
||||||
|
*
|
||||||
|
* @param [out] bsec_version_p pointer to struct which is to be populated with the version information
|
||||||
|
*
|
||||||
|
* @return Zero if successful, otherwise an error code
|
||||||
|
*
|
||||||
|
* See also: bsec_version_t
|
||||||
|
*
|
||||||
|
\code{.c}
|
||||||
|
// Example //
|
||||||
|
bsec_version_t version;
|
||||||
|
bsec_get_version(&version);
|
||||||
|
printf("BSEC version: %d.%d.%d.%d",version.major, version.minor, version.major_bugfix, version.minor_bugfix);
|
||||||
|
|
||||||
|
\endcode
|
||||||
|
*/
|
||||||
|
|
||||||
|
bsec_library_return_t bsec_get_version(bsec_version_t * bsec_version_p);
|
||||||
|
|
||||||
|
|
||||||
|
/*!
|
||||||
|
* @brief Initialize the library
|
||||||
|
*
|
||||||
|
* Initialization and reset of BSEC is performed by calling bsec_init(). Calling this function sets up the relation
|
||||||
|
* among all internal modules, initializes run-time dependent library states and resets the configuration and state
|
||||||
|
* of all BSEC signal processing modules to defaults.
|
||||||
|
*
|
||||||
|
* Before any further use, the library must be initialized. This ensure that all memory and states are in defined
|
||||||
|
* conditions prior to processing any data.
|
||||||
|
*
|
||||||
|
* @return Zero if successful, otherwise an error code
|
||||||
|
*
|
||||||
|
\code{.c}
|
||||||
|
|
||||||
|
// Initialize BSEC library before further use
|
||||||
|
bsec_init();
|
||||||
|
|
||||||
|
\endcode
|
||||||
|
*/
|
||||||
|
|
||||||
|
bsec_library_return_t bsec_init(void);
|
||||||
|
|
||||||
|
/*!
|
||||||
|
* @brief Subscribe to library virtual sensors outputs
|
||||||
|
*
|
||||||
|
* Use bsec_update_subscription() to instruct BSEC which of the processed output signals are requested at which sample rates.
|
||||||
|
* See ::bsec_virtual_sensor_t for available library outputs.
|
||||||
|
*
|
||||||
|
* Based on the requested virtual sensors outputs, BSEC will provide information about the required physical sensor input signals
|
||||||
|
* (see ::bsec_physical_sensor_t) with corresponding sample rates. This information is purely informational as bsec_sensor_control()
|
||||||
|
* will ensure the sensor is operated in the required manner. To disable a virtual sensor, set the sample rate to BSEC_SAMPLE_RATE_DISABLED.
|
||||||
|
*
|
||||||
|
* The subscription update using bsec_update_subscription() is apart from the signal processing one of the the most
|
||||||
|
* important functions. It allows to enable the desired library outputs. The function determines which physical input
|
||||||
|
* sensor signals are required at which sample rate to produce the virtual output sensor signals requested by the user.
|
||||||
|
* When this function returns with success, the requested outputs are called subscribed. A very important feature is the
|
||||||
|
* retaining of already subscribed outputs. Further outputs can be requested or disabled both individually and
|
||||||
|
* group-wise in addition to already subscribed outputs without changing them unless a change of already subscribed
|
||||||
|
* outputs is requested.
|
||||||
|
*
|
||||||
|
* @note The state of the library concerning the subscribed outputs cannot be retained among reboots.
|
||||||
|
*
|
||||||
|
* The interface of bsec_update_subscription() requires the usage of arrays of sensor configuration structures.
|
||||||
|
* Such a structure has the fields sensor identifier and sample rate. These fields have the properties:
|
||||||
|
* - Output signals of virtual sensors must be requested using unique identifiers (Member of ::bsec_virtual_sensor_t)
|
||||||
|
* - Different sets of identifiers are available for inputs of physical sensors and outputs of virtual sensors
|
||||||
|
* - Identifiers are unique values defined by the library, not from external
|
||||||
|
* - Sample rates must be provided as value of
|
||||||
|
* - An allowed sample rate for continuously sampled signals
|
||||||
|
* - 65535.0f (BSEC_SAMPLE_RATE_DISABLED) to turn off outputs and identify disabled inputs
|
||||||
|
*
|
||||||
|
* @note The same sensor identifiers are also used within the functions bsec_do_steps().
|
||||||
|
*
|
||||||
|
* The usage principles of bsec_update_subscription() are:
|
||||||
|
* - Differential updates (i.e., only asking for outputs that the user would like to change) is supported.
|
||||||
|
* - Invalid requests of outputs are ignored. Also if one of the requested outputs is unavailable, all the requests
|
||||||
|
* are ignored. At the same time, a warning is returned.
|
||||||
|
* - To disable BSEC, all outputs shall be turned off. Only enabled (subscribed) outputs have to be disabled while
|
||||||
|
* already disabled outputs do not have to be disabled explicitly.
|
||||||
|
*
|
||||||
|
* @param[in] requested_virtual_sensors Pointer to array of requested virtual sensor (output) configurations for the library
|
||||||
|
* @param[in] n_requested_virtual_sensors Number of virtual sensor structs pointed by requested_virtual_sensors
|
||||||
|
* @param[out] required_sensor_settings Pointer to array of required physical sensor configurations for the library
|
||||||
|
* @param[in,out] n_required_sensor_settings [in] Size of allocated required_sensor_settings array, [out] number of sensor configurations returned
|
||||||
|
*
|
||||||
|
* @return Zero when successful, otherwise an error code
|
||||||
|
*
|
||||||
|
* @sa bsec_sensor_configuration_t
|
||||||
|
* @sa bsec_physical_sensor_t
|
||||||
|
* @sa bsec_virtual_sensor_t
|
||||||
|
*
|
||||||
|
\code{.c}
|
||||||
|
// Example //
|
||||||
|
|
||||||
|
// Change 3 virtual sensors (switch IAQ and raw temperature -> on / pressure -> off)
|
||||||
|
bsec_sensor_configuration_t requested_virtual_sensors[3];
|
||||||
|
uint8_t n_requested_virtual_sensors = 3;
|
||||||
|
|
||||||
|
requested_virtual_sensors[0].sensor_id = BSEC_OUTPUT_IAQ;
|
||||||
|
requested_virtual_sensors[0].sample_rate = BSEC_SAMPLE_RATE_ULP;
|
||||||
|
requested_virtual_sensors[1].sensor_id = BSEC_OUTPUT_RAW_TEMPERATURE;
|
||||||
|
requested_virtual_sensors[1].sample_rate = BSEC_SAMPLE_RATE_ULP;
|
||||||
|
requested_virtual_sensors[2].sensor_id = BSEC_OUTPUT_RAW_PRESSURE;
|
||||||
|
requested_virtual_sensors[2].sample_rate = BSEC_SAMPLE_RATE_DISABLED;
|
||||||
|
|
||||||
|
// Allocate a struct for the returned physical sensor settings
|
||||||
|
bsec_sensor_configuration_t required_sensor_settings[BSEC_MAX_PHYSICAL_SENSOR];
|
||||||
|
uint8_t n_required_sensor_settings = BSEC_MAX_PHYSICAL_SENSOR;
|
||||||
|
|
||||||
|
// Call bsec_update_subscription() to enable/disable the requested virtual sensors
|
||||||
|
bsec_update_subscription(requested_virtual_sensors, n_requested_virtual_sensors, required_sensor_settings, &n_required_sensor_settings);
|
||||||
|
\endcode
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
bsec_library_return_t bsec_update_subscription(const bsec_sensor_configuration_t * const requested_virtual_sensors,
|
||||||
|
const uint8_t n_requested_virtual_sensors, bsec_sensor_configuration_t * required_sensor_settings,
|
||||||
|
uint8_t * n_required_sensor_settings);
|
||||||
|
|
||||||
|
|
||||||
|
/*!
|
||||||
|
* @brief Main signal processing function of BSEC
|
||||||
|
*
|
||||||
|
*
|
||||||
|
* Processing of the input signals and returning of output samples is performed by bsec_do_steps().
|
||||||
|
* - The samples of all library inputs must be passed with unique identifiers representing the input signals from
|
||||||
|
* physical sensors where the order of these inputs can be chosen arbitrary. However, all input have to be provided
|
||||||
|
* within the same time period as they are read. A sequential provision to the library might result in undefined
|
||||||
|
* behavior.
|
||||||
|
* - The samples of all library outputs are returned with unique identifiers corresponding to the output signals of
|
||||||
|
* virtual sensors where the order of the returned outputs may be arbitrary.
|
||||||
|
* - The samples of all input as well as output signals of physical as well as virtual sensors use the same
|
||||||
|
* representation in memory with the following fields:
|
||||||
|
* - Sensor identifier:
|
||||||
|
* - For inputs: required to identify the input signal from a physical sensor
|
||||||
|
* - For output: overwritten by bsec_do_steps() to identify the returned signal from a virtual sensor
|
||||||
|
* - Time stamp of the sample
|
||||||
|
*
|
||||||
|
* Calling bsec_do_steps() requires the samples of the input signals to be provided along with their time stamp when
|
||||||
|
* they are recorded and only when they are acquired. Repetition of samples with the same time stamp are ignored and
|
||||||
|
* result in a warning. Repetition of values of samples which are not acquired anew by a sensor result in deviations
|
||||||
|
* of the computed output signals. Concerning the returned output samples, an important feature is, that a value is
|
||||||
|
* returned for an output only when a new occurrence has been computed. A sample of an output signal is returned only
|
||||||
|
* once.
|
||||||
|
*
|
||||||
|
*
|
||||||
|
* @param[in] inputs Array of input data samples. Each array element represents a sample of a different physical sensor.
|
||||||
|
* @param[in] n_inputs Number of passed input data structs.
|
||||||
|
* @param[out] outputs Array of output data samples. Each array element represents a sample of a different virtual sensor.
|
||||||
|
* @param[in,out] n_outputs [in] Number of allocated output structs, [out] number of outputs returned
|
||||||
|
*
|
||||||
|
* @return Zero when successful, otherwise an error code
|
||||||
|
*
|
||||||
|
|
||||||
|
\code{.c}
|
||||||
|
// Example //
|
||||||
|
|
||||||
|
// Allocate input and output memory
|
||||||
|
bsec_input_t input[3];
|
||||||
|
uint8_t n_input = 3;
|
||||||
|
bsec_output_t output[2];
|
||||||
|
uint8_t n_output=2;
|
||||||
|
|
||||||
|
bsec_library_return_t status;
|
||||||
|
|
||||||
|
// Populate the input structs, assuming the we have timestamp (ts),
|
||||||
|
// gas sensor resistance (R), temperature (T), and humidity (rH) available
|
||||||
|
// as input variables
|
||||||
|
input[0].sensor_id = BSEC_INPUT_GASRESISTOR;
|
||||||
|
input[0].signal = R;
|
||||||
|
input[0].time_stamp= ts;
|
||||||
|
input[1].sensor_id = BSEC_INPUT_TEMPERATURE;
|
||||||
|
input[1].signal = T;
|
||||||
|
input[1].time_stamp= ts;
|
||||||
|
input[2].sensor_id = BSEC_INPUT_HUMIDITY;
|
||||||
|
input[2].signal = rH;
|
||||||
|
input[2].time_stamp= ts;
|
||||||
|
|
||||||
|
|
||||||
|
// Invoke main processing BSEC function
|
||||||
|
status = bsec_do_steps( input, n_input, output, &n_output );
|
||||||
|
|
||||||
|
// Iterate through the BSEC output data, if the call succeeded
|
||||||
|
if(status == BSEC_OK)
|
||||||
|
{
|
||||||
|
for(int i = 0; i < n_output; i++)
|
||||||
|
{
|
||||||
|
switch(output[i].sensor_id)
|
||||||
|
{
|
||||||
|
case BSEC_OUTPUT_IAQ:
|
||||||
|
// Retrieve the IAQ results from output[i].signal
|
||||||
|
// and do something with the data
|
||||||
|
break;
|
||||||
|
case BSEC_OUTPUT_AMBIENT_TEMPERATURE:
|
||||||
|
// Retrieve the ambient temperature results from output[i].signal
|
||||||
|
// and do something with the data
|
||||||
|
break;
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
\endcode
|
||||||
|
*/
|
||||||
|
|
||||||
|
bsec_library_return_t bsec_do_steps(const bsec_input_t * const inputs, const uint8_t n_inputs, bsec_output_t * outputs, uint8_t * n_outputs);
|
||||||
|
|
||||||
|
|
||||||
|
/*!
|
||||||
|
* @brief Reset a particular virtual sensor output
|
||||||
|
*
|
||||||
|
* This function allows specific virtual sensor outputs to be reset. The meaning of "reset" depends on the specific
|
||||||
|
* output. In case of the IAQ output, reset means zeroing the output to the current ambient conditions.
|
||||||
|
*
|
||||||
|
* @param[in] sensor_id Virtual sensor to be reset
|
||||||
|
*
|
||||||
|
* @return Zero when successful, otherwise an error code
|
||||||
|
*
|
||||||
|
*
|
||||||
|
\code{.c}
|
||||||
|
// Example //
|
||||||
|
bsec_reset_output(BSEC_OUTPUT_IAQ);
|
||||||
|
|
||||||
|
\endcode
|
||||||
|
*/
|
||||||
|
|
||||||
|
bsec_library_return_t bsec_reset_output(uint8_t sensor_id);
|
||||||
|
|
||||||
|
|
||||||
|
/*!
|
||||||
|
* @brief Update algorithm configuration parameters
|
||||||
|
*
|
||||||
|
* BSEC uses a default configuration for the modules and common settings. The initial configuration can be customized
|
||||||
|
* by bsec_set_configuration(). This is an optional step.
|
||||||
|
*
|
||||||
|
* @note A work buffer with sufficient size is required and has to be provided by the function caller to decompose
|
||||||
|
* the serialization and apply it to the library and its modules. Please use #BSEC_MAX_PROPERTY_BLOB_SIZE for allotting
|
||||||
|
* the required size.
|
||||||
|
*
|
||||||
|
* @param[in] serialized_settings Settings serialized to a binary blob
|
||||||
|
* @param[in] n_serialized_settings Size of the settings blob
|
||||||
|
* @param[in,out] work_buffer Work buffer used to parse the blob
|
||||||
|
* @param[in] n_work_buffer_size Length of the work buffer available for parsing the blob
|
||||||
|
*
|
||||||
|
* @return Zero when successful, otherwise an error code
|
||||||
|
*
|
||||||
|
\code{.c}
|
||||||
|
// Example //
|
||||||
|
|
||||||
|
// Allocate variables
|
||||||
|
uint8_t serialized_settings[BSEC_MAX_PROPERTY_BLOB_SIZE];
|
||||||
|
uint32_t n_serialized_settings_max = BSEC_MAX_PROPERTY_BLOB_SIZE;
|
||||||
|
uint8_t work_buffer[BSEC_MAX_PROPERTY_BLOB_SIZE];
|
||||||
|
uint32_t n_work_buffer = BSEC_MAX_PROPERTY_BLOB_SIZE;
|
||||||
|
|
||||||
|
// Here we will load a provided config string into serialized_settings
|
||||||
|
|
||||||
|
// Apply the configuration
|
||||||
|
bsec_set_configuration(serialized_settings, n_serialized_settings_max, work_buffer, n_work_buffer);
|
||||||
|
|
||||||
|
\endcode
|
||||||
|
*/
|
||||||
|
|
||||||
|
bsec_library_return_t bsec_set_configuration(const uint8_t * const serialized_settings,
|
||||||
|
const uint32_t n_serialized_settings, uint8_t * work_buffer,
|
||||||
|
const uint32_t n_work_buffer_size);
|
||||||
|
|
||||||
|
|
||||||
|
/*!
|
||||||
|
* @brief Restore the internal state of the library
|
||||||
|
*
|
||||||
|
* BSEC uses a default state for all signal processing modules and the BSEC module. To ensure optimal performance,
|
||||||
|
* especially of the gas sensor functionality, it is recommended to retrieve the state using bsec_get_state()
|
||||||
|
* before unloading the library, storing it in some form of non-volatile memory, and setting it using bsec_set_state()
|
||||||
|
* before resuming further operation of the library.
|
||||||
|
*
|
||||||
|
* @note A work buffer with sufficient size is required and has to be provided by the function caller to decompose the
|
||||||
|
* serialization and apply it to the library and its modules. Please use #BSEC_MAX_PROPERTY_BLOB_SIZE for allotting the
|
||||||
|
* required size.
|
||||||
|
*
|
||||||
|
* @param[in] serialized_state States serialized to a binary blob
|
||||||
|
* @param[in] n_serialized_state Size of the state blob
|
||||||
|
* @param[in,out] work_buffer Work buffer used to parse the blob
|
||||||
|
* @param[in] n_work_buffer_size Length of the work buffer available for parsing the blob
|
||||||
|
*
|
||||||
|
* @return Zero when successful, otherwise an error code
|
||||||
|
*
|
||||||
|
\code{.c}
|
||||||
|
// Example //
|
||||||
|
|
||||||
|
// Allocate variables
|
||||||
|
uint8_t serialized_state[BSEC_MAX_PROPERTY_BLOB_SIZE];
|
||||||
|
uint32_t n_serialized_state = BSEC_MAX_PROPERTY_BLOB_SIZE;
|
||||||
|
uint8_t work_buffer_state[BSEC_MAX_PROPERTY_BLOB_SIZE];
|
||||||
|
uint32_t n_work_buffer_size = BSEC_MAX_PROPERTY_BLOB_SIZE;
|
||||||
|
|
||||||
|
// Here we will load a state string from a previous use of BSEC
|
||||||
|
|
||||||
|
// Apply the previous state to the current BSEC session
|
||||||
|
bsec_set_state(serialized_state, n_serialized_state, work_buffer_state, n_work_buffer_size);
|
||||||
|
|
||||||
|
\endcode
|
||||||
|
*/
|
||||||
|
|
||||||
|
bsec_library_return_t bsec_set_state(const uint8_t * const serialized_state, const uint32_t n_serialized_state,
|
||||||
|
uint8_t * work_buffer, const uint32_t n_work_buffer_size);
|
||||||
|
|
||||||
|
|
||||||
|
/*!
|
||||||
|
* @brief Retrieve the current library configuration
|
||||||
|
*
|
||||||
|
* BSEC allows to retrieve the current configuration using bsec_get_configuration(). Returns a binary blob encoding
|
||||||
|
* the current configuration parameters of the library in a format compatible with bsec_set_configuration().
|
||||||
|
*
|
||||||
|
* @note The function bsec_get_configuration() is required to be used for debugging purposes only.
|
||||||
|
* @note A work buffer with sufficient size is required and has to be provided by the function caller to decompose the
|
||||||
|
* serialization and apply it to the library and its modules. Please use #BSEC_MAX_PROPERTY_BLOB_SIZE for allotting the
|
||||||
|
* required size.
|
||||||
|
*
|
||||||
|
*
|
||||||
|
* @param[in] config_id Identifier for a specific set of configuration settings to be returned;
|
||||||
|
* shall be zero to retrieve all configuration settings.
|
||||||
|
* @param[out] serialized_settings Buffer to hold the serialized config blob
|
||||||
|
* @param[in] n_serialized_settings_max Maximum available size for the serialized settings
|
||||||
|
* @param[in,out] work_buffer Work buffer used to parse the binary blob
|
||||||
|
* @param[in] n_work_buffer Length of the work buffer available for parsing the blob
|
||||||
|
* @param[out] n_serialized_settings Actual size of the returned serialized configuration blob
|
||||||
|
*
|
||||||
|
* @return Zero when successful, otherwise an error code
|
||||||
|
*
|
||||||
|
\code{.c}
|
||||||
|
// Example //
|
||||||
|
|
||||||
|
// Allocate variables
|
||||||
|
uint8_t serialized_settings[BSEC_MAX_PROPERTY_BLOB_SIZE];
|
||||||
|
uint32_t n_serialized_settings_max = BSEC_MAX_PROPERTY_BLOB_SIZE;
|
||||||
|
uint8_t work_buffer[BSEC_MAX_PROPERTY_BLOB_SIZE];
|
||||||
|
uint32_t n_work_buffer = BSEC_MAX_PROPERTY_BLOB_SIZE;
|
||||||
|
uint32_t n_serialized_settings = 0;
|
||||||
|
|
||||||
|
// Configuration of BSEC algorithm is stored in 'serialized_settings'
|
||||||
|
bsec_get_configuration(0, serialized_settings, n_serialized_settings_max, work_buffer, n_work_buffer, &n_serialized_settings);
|
||||||
|
|
||||||
|
\endcode
|
||||||
|
*/
|
||||||
|
|
||||||
|
bsec_library_return_t bsec_get_configuration(const uint8_t config_id, uint8_t * serialized_settings, const uint32_t n_serialized_settings_max,
|
||||||
|
uint8_t * work_buffer, const uint32_t n_work_buffer, uint32_t * n_serialized_settings);
|
||||||
|
|
||||||
|
|
||||||
|
/*!
|
||||||
|
*@brief Retrieve the current internal library state
|
||||||
|
*
|
||||||
|
* BSEC allows to retrieve the current states of all signal processing modules and the BSEC module using
|
||||||
|
* bsec_get_state(). This allows a restart of the processing after a reboot of the system by calling bsec_set_state().
|
||||||
|
*
|
||||||
|
* @note A work buffer with sufficient size is required and has to be provided by the function caller to decompose the
|
||||||
|
* serialization and apply it to the library and its modules. Please use #BSEC_MAX_STATE_BLOB_SIZE for allotting the
|
||||||
|
* required size.
|
||||||
|
*
|
||||||
|
*
|
||||||
|
* @param[in] state_set_id Identifier for a specific set of states to be returned; shall be
|
||||||
|
* zero to retrieve all states.
|
||||||
|
* @param[out] serialized_state Buffer to hold the serialized config blob
|
||||||
|
* @param[in] n_serialized_state_max Maximum available size for the serialized states
|
||||||
|
* @param[in,out] work_buffer Work buffer used to parse the blob
|
||||||
|
* @param[in] n_work_buffer Length of the work buffer available for parsing the blob
|
||||||
|
* @param[out] n_serialized_state Actual size of the returned serialized blob
|
||||||
|
*
|
||||||
|
* @return Zero when successful, otherwise an error code
|
||||||
|
*
|
||||||
|
\code{.c}
|
||||||
|
// Example //
|
||||||
|
|
||||||
|
// Allocate variables
|
||||||
|
uint8_t serialized_state[BSEC_MAX_STATE_BLOB_SIZE];
|
||||||
|
uint32_t n_serialized_state_max = BSEC_MAX_STATE_BLOB_SIZE;
|
||||||
|
uint32_t n_serialized_state = BSEC_MAX_STATE_BLOB_SIZE;
|
||||||
|
uint8_t work_buffer_state[BSEC_MAX_STATE_BLOB_SIZE];
|
||||||
|
uint32_t n_work_buffer_size = BSEC_MAX_STATE_BLOB_SIZE;
|
||||||
|
|
||||||
|
// Algorithm state is stored in 'serialized_state'
|
||||||
|
bsec_get_state(0, serialized_state, n_serialized_state_max, work_buffer_state, n_work_buffer_size, &n_serialized_state);
|
||||||
|
|
||||||
|
\endcode
|
||||||
|
*/
|
||||||
|
|
||||||
|
bsec_library_return_t bsec_get_state(const uint8_t state_set_id, uint8_t * serialized_state,
|
||||||
|
const uint32_t n_serialized_state_max, uint8_t * work_buffer, const uint32_t n_work_buffer,
|
||||||
|
uint32_t * n_serialized_state);
|
||||||
|
|
||||||
|
/*!
|
||||||
|
* @brief Retrieve BMExxx sensor instructions
|
||||||
|
*
|
||||||
|
* The bsec_sensor_control() interface is a key feature of BSEC, as it allows an easy way for the signal processing
|
||||||
|
* library to control the operation of the BME sensor. This is important since gas sensor behaviour is mainly
|
||||||
|
* determined by how the integrated heater is configured. To ensure an easy integration of BSEC into any system,
|
||||||
|
* bsec_sensor_control() will provide the caller with information about the current sensor configuration that is
|
||||||
|
* necessary to fulfill the input requirements derived from the current outputs requested via
|
||||||
|
* bsec_update_subscription().
|
||||||
|
*
|
||||||
|
* In practice the use of this function shall be as follows:
|
||||||
|
* - Call bsec_sensor_control() which returns a bsec_bme_settings_t struct.
|
||||||
|
* - Based on the information contained in this struct, the sensor is configured and a forced-mode measurement is
|
||||||
|
* triggered if requested by bsec_sensor_control().
|
||||||
|
* - Once this forced-mode measurement is complete, the signals specified in this struct shall be passed to
|
||||||
|
* bsec_do_steps() to perform the signal processing.
|
||||||
|
* - After processing, the process should sleep until the bsec_bme_settings_t::next_call timestamp is reached.
|
||||||
|
*
|
||||||
|
*
|
||||||
|
* @param [in] time_stamp Current timestamp in [ns]
|
||||||
|
* @param[out] sensor_settings Settings to be passed to API to operate sensor at this time instance
|
||||||
|
*
|
||||||
|
* @return Zero when successful, otherwise an error code
|
||||||
|
*/
|
||||||
|
|
||||||
|
bsec_library_return_t bsec_sensor_control(const int64_t time_stamp, bsec_bme_settings_t *sensor_settings);
|
||||||
|
|
||||||
|
/*@}*/ //BSEC Interface
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#endif /* __BSEC_INTERFACE_H__ */
|
BIN
src/BSEC/libalgobsec.a
Normal file
BIN
src/BSEC/libalgobsec.a
Normal file
Binary file not shown.
321
src/bmeSPI.cxx
321
src/bmeSPI.cxx
|
@ -8,34 +8,51 @@
|
||||||
#include <cstring>
|
#include <cstring>
|
||||||
|
|
||||||
#include "BME68x-Sensor-API/bme68x.h"
|
#include "BME68x-Sensor-API/bme68x.h"
|
||||||
|
#include "BSEC/bsec_interface.h"
|
||||||
#include "oled-driver/Renderer.hpp"
|
#include "oled-driver/Renderer.hpp"
|
||||||
|
|
||||||
extern QueueHandle_t spiMutex;
|
extern QueueHandle_t spiMutex;
|
||||||
extern void waitForSpiFinished();
|
extern void waitForSpiFinished();
|
||||||
extern Renderer renderer;
|
extern Renderer renderer;
|
||||||
|
|
||||||
|
extern void initDisplay();
|
||||||
|
|
||||||
constexpr auto MaximumChars = 22 * 4;
|
constexpr auto MaximumChars = 22 * 4;
|
||||||
char buffer[MaximumChars];
|
char buffer[MaximumChars];
|
||||||
|
|
||||||
constexpr auto SPI_DEVICE = &hspi2;
|
constexpr auto SpiPeripherie = &hspi2;
|
||||||
uint8_t txBuffer[512];
|
uint8_t txBuffer[512 + 1];
|
||||||
|
|
||||||
|
constexpr auto temperatureOffset = 7.0f;
|
||||||
|
|
||||||
struct bme68x_dev bmeSensor;
|
struct bme68x_dev bmeSensor;
|
||||||
volatile int8_t res;
|
|
||||||
struct bme68x_conf bmeConf;
|
struct bme68x_conf bmeConf;
|
||||||
struct bme68x_heatr_conf bmeHeaterConf;
|
struct bme68x_heatr_conf bmeHeaterConf;
|
||||||
struct bme68x_data bmeData[3];
|
struct bme68x_data bmeData[3];
|
||||||
|
|
||||||
uint16_t del_period;
|
uint32_t delayInUs;
|
||||||
uint32_t time_ms = 0;
|
uint8_t numberOfData;
|
||||||
uint8_t n_fields;
|
|
||||||
uint16_t sampleCount = 1;
|
|
||||||
|
|
||||||
/* Heater temperature in degree Celsius */
|
constexpr auto ProfileLength = 1;
|
||||||
uint16_t temp_prof[10] = {200, 240, 280, 320, 360, 360, 320, 280, 240, 200};
|
|
||||||
|
|
||||||
/* Heating duration in milliseconds */
|
// Heater temperature in degree Celsius
|
||||||
uint16_t dur_prof[10] = {100, 100, 100, 100, 100, 100, 100, 100, 100, 100};
|
uint16_t temperatureProfile[ProfileLength] = {320};
|
||||||
|
|
||||||
|
// Heating duration in milliseconds
|
||||||
|
uint16_t durationProfile[ProfileLength] = {150};
|
||||||
|
|
||||||
|
constexpr uint8_t numberRequestedVirtualSensors = 4;
|
||||||
|
bsec_sensor_configuration_t requestedVirtualSensors[numberRequestedVirtualSensors];
|
||||||
|
|
||||||
|
float iaq, rawTemperature, pressure, rawHumidity, gasResistance, stabStatus, runInStatus,
|
||||||
|
temperature, humidity, staticIaq, co2Equivalent, breathVocEquivalent, compGasValue,
|
||||||
|
gasPercentage;
|
||||||
|
|
||||||
|
uint8_t iaqAccuracy, staticIaqAccuracy, co2Accuracy, breathVocAccuracy, compGasAccuracy,
|
||||||
|
gasPercentageAcccuracy;
|
||||||
|
|
||||||
|
// uint8_t bsecState[BSEC_MAX_STATE_BLOB_SIZE];
|
||||||
|
// uint8_t workBuffer[BSEC_MAX_WORKBUFFER_SIZE];
|
||||||
|
|
||||||
void setChipSelect(bool state)
|
void setChipSelect(bool state)
|
||||||
{
|
{
|
||||||
|
@ -49,9 +66,9 @@ BME68X_INTF_RET_TYPE bme68x_spi_read(uint8_t reg_addr, uint8_t *reg_data, uint32
|
||||||
xSemaphoreTake(spiMutex, portMAX_DELAY);
|
xSemaphoreTake(spiMutex, portMAX_DELAY);
|
||||||
|
|
||||||
setChipSelect(true);
|
setChipSelect(true);
|
||||||
HAL_SPI_Transmit_DMA(SPI_DEVICE, ®_addr, 1);
|
HAL_SPI_Transmit_DMA(SpiPeripherie, ®_addr, 1);
|
||||||
waitForSpiFinished();
|
waitForSpiFinished();
|
||||||
HAL_SPI_Receive_DMA(SPI_DEVICE, reg_data, len);
|
HAL_SPI_Receive_DMA(SpiPeripherie, reg_data, len);
|
||||||
waitForSpiFinished();
|
waitForSpiFinished();
|
||||||
setChipSelect(false);
|
setChipSelect(false);
|
||||||
|
|
||||||
|
@ -73,7 +90,7 @@ BME68X_INTF_RET_TYPE bme68x_spi_write(uint8_t reg_addr, const uint8_t *reg_data,
|
||||||
xSemaphoreTake(spiMutex, portMAX_DELAY);
|
xSemaphoreTake(spiMutex, portMAX_DELAY);
|
||||||
|
|
||||||
setChipSelect(true);
|
setChipSelect(true);
|
||||||
HAL_SPI_Transmit_DMA(SPI_DEVICE, const_cast<uint8_t *>(txBuffer), len + 1);
|
HAL_SPI_Transmit_DMA(SpiPeripherie, const_cast<uint8_t *>(txBuffer), len + 1);
|
||||||
waitForSpiFinished();
|
waitForSpiFinished();
|
||||||
setChipSelect(false);
|
setChipSelect(false);
|
||||||
|
|
||||||
|
@ -85,7 +102,7 @@ BME68X_INTF_RET_TYPE bme68x_spi_write(uint8_t reg_addr, const uint8_t *reg_data,
|
||||||
// Delay function maps
|
// Delay function maps
|
||||||
void bme68x_delay_us(uint32_t period, void *)
|
void bme68x_delay_us(uint32_t period, void *)
|
||||||
{
|
{
|
||||||
HAL_Delay(period / 1000);
|
vTaskDelay(period / 1000);
|
||||||
}
|
}
|
||||||
|
|
||||||
int8_t bme68x_spi_init(struct bme68x_dev *bme)
|
int8_t bme68x_spi_init(struct bme68x_dev *bme)
|
||||||
|
@ -94,13 +111,11 @@ int8_t bme68x_spi_init(struct bme68x_dev *bme)
|
||||||
|
|
||||||
if (bme != NULL)
|
if (bme != NULL)
|
||||||
{
|
{
|
||||||
// printf("SPI Interface\n");
|
|
||||||
bme->read = bme68x_spi_read;
|
bme->read = bme68x_spi_read;
|
||||||
bme->write = bme68x_spi_write;
|
bme->write = bme68x_spi_write;
|
||||||
bme->intf = BME68X_SPI_INTF;
|
bme->intf = BME68X_SPI_INTF;
|
||||||
|
|
||||||
bme->delay_us = bme68x_delay_us;
|
bme->delay_us = bme68x_delay_us;
|
||||||
bme->intf_ptr = SPI_DEVICE;
|
|
||||||
bme->amb_temp =
|
bme->amb_temp =
|
||||||
25; /* The ambient temperature in deg C is used for defining the heater temperature */
|
25; /* The ambient temperature in deg C is used for defining the heater temperature */
|
||||||
}
|
}
|
||||||
|
@ -112,90 +127,216 @@ int8_t bme68x_spi_init(struct bme68x_dev *bme)
|
||||||
return rslt;
|
return rslt;
|
||||||
}
|
}
|
||||||
|
|
||||||
void bme68x_check_rslt(const char *, int8_t)
|
void bmeSensorInit()
|
||||||
{
|
{
|
||||||
|
bme68x_spi_init(&bmeSensor);
|
||||||
|
bme68x_init(&bmeSensor);
|
||||||
|
|
||||||
|
bme68x_get_conf(&bmeConf, &bmeSensor);
|
||||||
|
bmeConf.os_hum = BME68X_OS_16X;
|
||||||
|
bmeConf.os_temp = BME68X_OS_2X;
|
||||||
|
bmeConf.os_pres = BME68X_OS_1X;
|
||||||
|
bmeConf.filter = BME68X_FILTER_OFF;
|
||||||
|
bmeConf.odr = BME68X_ODR_NONE;
|
||||||
|
bme68x_set_conf(&bmeConf, &bmeSensor);
|
||||||
|
|
||||||
|
bmeHeaterConf.enable = BME68X_ENABLE;
|
||||||
|
bmeHeaterConf.heatr_temp_prof = temperatureProfile;
|
||||||
|
bmeHeaterConf.heatr_dur_prof = durationProfile;
|
||||||
|
bmeHeaterConf.profile_len = ProfileLength;
|
||||||
|
bme68x_set_heatr_conf(BME68X_SEQUENTIAL_MODE, &bmeHeaterConf, &bmeSensor);
|
||||||
|
|
||||||
|
bme68x_set_op_mode(BME68X_SEQUENTIAL_MODE, &bmeSensor);
|
||||||
|
|
||||||
|
bsec_init();
|
||||||
|
|
||||||
|
// Change 3 virtual sensors (switch IAQ and raw temperature -> on / pressure -> off
|
||||||
|
requestedVirtualSensors[0].sensor_id = BSEC_OUTPUT_IAQ;
|
||||||
|
requestedVirtualSensors[0].sample_rate = BSEC_SAMPLE_RATE_CONTINUOUS;
|
||||||
|
requestedVirtualSensors[1].sensor_id = BSEC_OUTPUT_CO2_EQUIVALENT;
|
||||||
|
requestedVirtualSensors[1].sample_rate = BSEC_SAMPLE_RATE_CONTINUOUS;
|
||||||
|
requestedVirtualSensors[2].sensor_id = BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE;
|
||||||
|
requestedVirtualSensors[2].sample_rate = BSEC_SAMPLE_RATE_CONTINUOUS;
|
||||||
|
requestedVirtualSensors[3].sensor_id = BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY;
|
||||||
|
requestedVirtualSensors[3].sample_rate = BSEC_SAMPLE_RATE_CONTINUOUS;
|
||||||
|
|
||||||
|
// Allocate a struct for the returned physical sensor settings
|
||||||
|
bsec_sensor_configuration_t requiredSensorSettings[BSEC_MAX_PHYSICAL_SENSOR];
|
||||||
|
uint8_t numberRequiredSensorSettings = BSEC_MAX_PHYSICAL_SENSOR;
|
||||||
|
|
||||||
|
// Call bsec_update_subscription() to enable/disable the requested virtual sensors
|
||||||
|
bsec_update_subscription(requestedVirtualSensors, numberRequestedVirtualSensors,
|
||||||
|
requiredSensorSettings, &numberRequiredSensorSettings);
|
||||||
}
|
}
|
||||||
|
|
||||||
void bmeRun()
|
void bmeRun()
|
||||||
{
|
{
|
||||||
res = bme68x_spi_init(&bmeSensor);
|
delayInUs = bme68x_get_meas_dur(BME68X_SEQUENTIAL_MODE, &bmeConf, &bmeSensor) +
|
||||||
bme68x_check_rslt("bme68x_interface_init", res);
|
(bmeHeaterConf.heatr_dur_prof[0] * 1000);
|
||||||
|
vTaskDelay(delayInUs / 1000);
|
||||||
|
|
||||||
res = bme68x_init(&bmeSensor);
|
auto status = bme68x_get_data(BME68X_SEQUENTIAL_MODE, bmeData, &numberOfData, &bmeSensor);
|
||||||
bme68x_check_rslt("bme68x_init", res);
|
if (status != 0)
|
||||||
|
|
||||||
/* Check if res == BME68X_OK, report or handle if otherwise */
|
|
||||||
res = bme68x_get_conf(&bmeConf, &bmeSensor);
|
|
||||||
bme68x_check_rslt("bme68x_get_conf", res);
|
|
||||||
|
|
||||||
/* Check if res == BME68X_OK, report or handle if otherwise */
|
|
||||||
bmeConf.filter = BME68X_FILTER_OFF;
|
|
||||||
bmeConf.odr =
|
|
||||||
BME68X_ODR_NONE; /* This parameter defines the sleep duration after each profile */
|
|
||||||
bmeConf.os_hum = BME68X_OS_16X;
|
|
||||||
bmeConf.os_pres = BME68X_OS_1X;
|
|
||||||
bmeConf.os_temp = BME68X_OS_2X;
|
|
||||||
res = bme68x_set_conf(&bmeConf, &bmeSensor);
|
|
||||||
bme68x_check_rslt("bme68x_set_conf", res);
|
|
||||||
|
|
||||||
/* Check if res == BME68X_OK, report or handle if otherwise */
|
|
||||||
bmeHeaterConf.enable = BME68X_ENABLE;
|
|
||||||
bmeHeaterConf.heatr_temp_prof = temp_prof;
|
|
||||||
bmeHeaterConf.heatr_dur_prof = dur_prof;
|
|
||||||
bmeHeaterConf.profile_len = 10;
|
|
||||||
res = bme68x_set_heatr_conf(BME68X_SEQUENTIAL_MODE, &bmeHeaterConf, &bmeSensor);
|
|
||||||
bme68x_check_rslt("bme68x_set_heatr_conf", res);
|
|
||||||
|
|
||||||
/* Check if res == BME68X_OK, report or handle if otherwise */
|
|
||||||
res = bme68x_set_op_mode(BME68X_SEQUENTIAL_MODE, &bmeSensor);
|
|
||||||
bme68x_check_rslt("bme68x_set_op_mode", res);
|
|
||||||
|
|
||||||
/* Check if res == BME68X_OK, report or handle if otherwise */
|
|
||||||
// printf("Sample, TimeStamp(ms), Temperature(deg C), Pressure(Pa), Humidity(%%), Gas "
|
|
||||||
// "resistance(ohm), Status, Profile index, Measurement index\n");
|
|
||||||
while (1)
|
|
||||||
{
|
{
|
||||||
del_period =
|
__asm("bkpt");
|
||||||
bme68x_get_meas_dur(BME68X_SEQUENTIAL_MODE, &bmeConf) + bmeHeaterConf.heatr_dur_prof[0];
|
}
|
||||||
vTaskDelay(del_period);
|
}
|
||||||
|
|
||||||
// time_ms = HAL_GetTick();
|
void bsecRun()
|
||||||
|
{
|
||||||
|
/*
|
||||||
|
auto status = bsec_set_state(state, BSEC_MAX_STATE_BLOB_SIZE, workBuffer, sizeof(workBuffer));
|
||||||
|
|
||||||
res = bme68x_get_data(BME68X_SEQUENTIAL_MODE, bmeData, &n_fields, &bmeSensor);
|
if (status == BSEC_OK)
|
||||||
bme68x_check_rslt("bme68x_get_data", res);
|
{
|
||||||
|
for (uint32_t i = 0; i < BSEC_MAX_STATE_BLOB_SIZE; i++)
|
||||||
/* Check if res == BME68X_OK, report or handle if otherwise */
|
|
||||||
for (uint8_t i = 0; i < n_fields; i++)
|
|
||||||
{
|
{
|
||||||
renderer.clearAll();
|
bsecState[i] = state[i];
|
||||||
|
|
||||||
snprintf(buffer, MaximumChars,
|
|
||||||
"%d°C, %luhPa, %lu%%\n%lukOhm, status: 0x%x\ngas_index: %d\nmeas_index: %d",
|
|
||||||
bmeData[i].temperature / 100, //
|
|
||||||
bmeData[i].pressure / 100, //
|
|
||||||
bmeData[i].humidity / 1000, //
|
|
||||||
bmeData[i].gas_resistance / 1000, //
|
|
||||||
bmeData[i].status, //
|
|
||||||
bmeData[i].gas_index, //
|
|
||||||
bmeData[i].meas_index);
|
|
||||||
|
|
||||||
renderer.print({0, 0}, buffer);
|
|
||||||
renderer.render();
|
|
||||||
/*
|
|
||||||
snprintf(buffer, MaximumChars, "sampleCount: %u\n, time_ms: %u\n \
|
|
||||||
temperature; %d°C\n \
|
|
||||||
pressure: %u\n \
|
|
||||||
humidity: %u\n \
|
|
||||||
gas_resistance: %u\n \
|
|
||||||
// status: 0x%x\n \
|
|
||||||
//gas_index: %d\n \
|
|
||||||
meas_index: %d\n",
|
|
||||||
sampleCount, time_ms, (bmeData[i].temperature / 100), bmeData[i].pressure,
|
|
||||||
(bmeData[i].humidity / 1000), bmeData[i].gas_resistance, bmeData[i].status,
|
|
||||||
bmeData[i].gas_index, bmeData[i].meas_index);
|
|
||||||
*/
|
|
||||||
}
|
}
|
||||||
|
validBsecState = true;
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
|
||||||
|
if (!(bmeData[numberOfData - 1].status & BME68X_NEW_DATA_MSK))
|
||||||
|
{
|
||||||
|
__asm("bkpt");
|
||||||
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
return;
|
bsec_input_t inputs[BSEC_MAX_PHYSICAL_SENSOR];
|
||||||
|
uint8_t nInputs = 0, nOutputs = 0;
|
||||||
|
int64_t currentTimeInNs = xTaskGetTickCount() * int64_t(1000) * int64_t(1000);
|
||||||
|
|
||||||
|
inputs[nInputs].sensor_id = BSEC_INPUT_TEMPERATURE;
|
||||||
|
inputs[nInputs].signal = bmeData[numberOfData - 1].temperature / 100.0f;
|
||||||
|
inputs[nInputs].time_stamp = currentTimeInNs;
|
||||||
|
nInputs++;
|
||||||
|
|
||||||
|
inputs[nInputs].sensor_id = BSEC_INPUT_HUMIDITY;
|
||||||
|
inputs[nInputs].signal = bmeData[numberOfData - 1].humidity / 1000.0f;
|
||||||
|
inputs[nInputs].time_stamp = currentTimeInNs;
|
||||||
|
nInputs++;
|
||||||
|
|
||||||
|
inputs[nInputs].sensor_id = BSEC_INPUT_PRESSURE;
|
||||||
|
inputs[nInputs].signal = bmeData[numberOfData - 1].pressure;
|
||||||
|
inputs[nInputs].time_stamp = currentTimeInNs;
|
||||||
|
nInputs++;
|
||||||
|
|
||||||
|
inputs[nInputs].sensor_id = BSEC_INPUT_GASRESISTOR;
|
||||||
|
inputs[nInputs].signal = bmeData[numberOfData - 1].gas_resistance;
|
||||||
|
inputs[nInputs].time_stamp = currentTimeInNs;
|
||||||
|
nInputs++;
|
||||||
|
|
||||||
|
inputs[nInputs].sensor_id = BSEC_INPUT_HEATSOURCE;
|
||||||
|
inputs[nInputs].signal = temperatureOffset;
|
||||||
|
inputs[nInputs].time_stamp = currentTimeInNs;
|
||||||
|
nInputs++;
|
||||||
|
|
||||||
|
nOutputs = BSEC_NUMBER_OUTPUTS;
|
||||||
|
bsec_output_t outputs[BSEC_NUMBER_OUTPUTS];
|
||||||
|
|
||||||
|
auto status = bsec_do_steps(inputs, nInputs, outputs, &nOutputs);
|
||||||
|
if (status != BSEC_OK)
|
||||||
|
{
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// zeroOutputs();
|
||||||
|
|
||||||
|
if (nOutputs > 0)
|
||||||
|
{
|
||||||
|
auto outputTimestamp = outputs[0].time_stamp / 1000000; /* Convert from ns to ms */
|
||||||
|
|
||||||
|
for (uint8_t i = 0; i < nOutputs; i++)
|
||||||
|
{
|
||||||
|
switch (outputs[i].sensor_id)
|
||||||
|
{
|
||||||
|
case BSEC_OUTPUT_IAQ:
|
||||||
|
iaq = outputs[i].signal;
|
||||||
|
iaqAccuracy = outputs[i].accuracy;
|
||||||
|
break;
|
||||||
|
case BSEC_OUTPUT_STATIC_IAQ:
|
||||||
|
staticIaq = outputs[i].signal;
|
||||||
|
staticIaqAccuracy = outputs[i].accuracy;
|
||||||
|
break;
|
||||||
|
case BSEC_OUTPUT_CO2_EQUIVALENT:
|
||||||
|
co2Equivalent = outputs[i].signal;
|
||||||
|
co2Accuracy = outputs[i].accuracy;
|
||||||
|
break;
|
||||||
|
case BSEC_OUTPUT_BREATH_VOC_EQUIVALENT:
|
||||||
|
breathVocEquivalent = outputs[i].signal;
|
||||||
|
breathVocAccuracy = outputs[i].accuracy;
|
||||||
|
break;
|
||||||
|
case BSEC_OUTPUT_RAW_TEMPERATURE:
|
||||||
|
rawTemperature = outputs[i].signal;
|
||||||
|
break;
|
||||||
|
case BSEC_OUTPUT_RAW_PRESSURE:
|
||||||
|
pressure = outputs[i].signal;
|
||||||
|
break;
|
||||||
|
case BSEC_OUTPUT_RAW_HUMIDITY:
|
||||||
|
rawHumidity = outputs[i].signal;
|
||||||
|
break;
|
||||||
|
case BSEC_OUTPUT_RAW_GAS:
|
||||||
|
gasResistance = outputs[i].signal;
|
||||||
|
break;
|
||||||
|
case BSEC_OUTPUT_STABILIZATION_STATUS:
|
||||||
|
stabStatus = outputs[i].signal;
|
||||||
|
break;
|
||||||
|
case BSEC_OUTPUT_RUN_IN_STATUS:
|
||||||
|
runInStatus = outputs[i].signal;
|
||||||
|
break;
|
||||||
|
case BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE:
|
||||||
|
temperature = outputs[i].signal;
|
||||||
|
break;
|
||||||
|
case BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY:
|
||||||
|
humidity = outputs[i].signal;
|
||||||
|
break;
|
||||||
|
case BSEC_OUTPUT_COMPENSATED_GAS:
|
||||||
|
compGasValue = outputs[i].signal;
|
||||||
|
compGasAccuracy = outputs[i].accuracy;
|
||||||
|
break;
|
||||||
|
case BSEC_OUTPUT_GAS_PERCENTAGE:
|
||||||
|
gasPercentage = outputs[i].signal;
|
||||||
|
gasPercentageAcccuracy = outputs[i].accuracy;
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void printBmeSensorData()
|
||||||
|
{
|
||||||
|
renderer.clearAll();
|
||||||
|
|
||||||
|
snprintf(buffer, MaximumChars,
|
||||||
|
"%d°C, %luhPa, %d%%\nIAQ: %d, Accuracy: %d\nCO2: %dppm\n%d, %d, %d - %lukOhm",
|
||||||
|
static_cast<int>(temperature), //
|
||||||
|
bmeData[numberOfData - 1].pressure / 100, //
|
||||||
|
static_cast<int>(humidity), //
|
||||||
|
static_cast<int>(iaq), //
|
||||||
|
iaqAccuracy, //
|
||||||
|
static_cast<int>(co2Equivalent), //
|
||||||
|
bmeData[numberOfData - 1].status, //
|
||||||
|
bmeData[numberOfData - 1].gas_index, //
|
||||||
|
bmeData[numberOfData - 1].gas_wait, //
|
||||||
|
bmeData[numberOfData - 1].gas_resistance / 1000);
|
||||||
|
|
||||||
|
renderer.print({0, 0}, buffer);
|
||||||
|
renderer.render();
|
||||||
|
}
|
||||||
|
|
||||||
|
//--------------------------------------------------------------------------------------------------
|
||||||
|
extern "C" void sensorTask(void *)
|
||||||
|
{
|
||||||
|
initDisplay();
|
||||||
|
bmeSensorInit();
|
||||||
|
|
||||||
|
while (1)
|
||||||
|
{
|
||||||
|
bmeRun();
|
||||||
|
bsecRun();
|
||||||
|
printBmeSensorData();
|
||||||
|
}
|
||||||
}
|
}
|
15
src/main.cxx
15
src/main.cxx
|
@ -3,13 +3,11 @@
|
||||||
#include "semphr.h"
|
#include "semphr.h"
|
||||||
#include "task.h"
|
#include "task.h"
|
||||||
|
|
||||||
|
// #include "BSEC/bsec_integration.h"
|
||||||
#include "SSD1306_SPI.hpp"
|
#include "SSD1306_SPI.hpp"
|
||||||
#include "oled-driver/Display.hpp"
|
#include "oled-driver/Display.hpp"
|
||||||
#include "oled-driver/Renderer.hpp"
|
#include "oled-driver/Renderer.hpp"
|
||||||
|
|
||||||
extern TaskHandle_t sensorHandle;
|
|
||||||
extern void bmeRun();
|
|
||||||
|
|
||||||
// oled display
|
// oled display
|
||||||
SSD1306_SPI ssdSpiInterface;
|
SSD1306_SPI ssdSpiInterface;
|
||||||
Display display(ssdSpiInterface);
|
Display display(ssdSpiInterface);
|
||||||
|
@ -67,15 +65,4 @@ extern "C" void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *)
|
||||||
extern "C" void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *)
|
extern "C" void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *)
|
||||||
{
|
{
|
||||||
notifySpiIsFinished();
|
notifySpiIsFinished();
|
||||||
}
|
|
||||||
|
|
||||||
//--------------------------------------------------------------------------------------------------
|
|
||||||
extern "C" void sensorTask(void *)
|
|
||||||
{
|
|
||||||
initDisplay();
|
|
||||||
|
|
||||||
bmeRun();
|
|
||||||
while (1)
|
|
||||||
{
|
|
||||||
}
|
|
||||||
}
|
}
|
Loading…
Reference in a new issue